Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The neurobiological consequence of predating or grazing

Scientists from Tübingen compare neuronal network connections in two worm species

Researchers in the group of Ralf Sommer at the Max Planck Institute for Developmental Biology in Tuebingen, Germany, have for the first time been able to identify neuronal correlates of behaviour by comparing maps of synaptic connectivity, or “connectomes”, between two species with different behaviour.

They compared the pharyngeal nervous systems of two nematodes, the bacterial feeding Caenorhabditis elegans and the predator/omnivore Pristionchus pacificus and found large differences in how the neurons are “wired” together.

A long standing question in neurobiology is how certain behaviours are reflected in the pattern of connections between neurons. Answering this question requires a comparative approach, which has proved impossible even in a rather small organism like the nematode due to technical limitations in the preparation and analysis of the extremely large data sets. Dan Bumbarger and his colleagues have chosen the pharyngeal nervous systems of C. elegans and P. pacificus, which consist of only 20 neurons and show a high degree of independence from the body nervous system. These 20 neurons regulate the contraction of the pharynx muscles which are responsible for the uptake of food and its processing prior to digestion in the intestine.

Bumbarger has prepared ultra-thin sections of two Pristionchus worms and compared the number and location of synapses in the pharynx nervous system with the existing C. elegans data. Despite the small size of a nematode, data generation and analysis took over three years: Each of the 150 micrometre long pharynx regions yielded more than 3000 sections that had to be individually imaged and analysed under the electron microscope.

The first result of this extensive study came as a surprise: “By means of their shape and position each of the 20 neurons in Pristionchus pacificus could be correlated to an exact equivalent in Caenorhabditis elegans” explains the scientist. “This is all the more astonishing as the evolutionary distance between the two worm species is over 200 million years and they differ markedly in feeding behaviour and in the anatomy of their mouth parts.” While C. elegans feeds exclusively on bacteria, P. pacificus is able to switch its behaviour to prey on other worms if bacterial food gets scarce.

These differences are reflected in the number and position of neuronal synapses. While in C. elegans only 9 out of 20 nerve cells are motor neurons, which primarily activate muscle cells, the number is up to 19 in P. pacificus; only one neuron functions exclusively as an interneuron, establishing connections between nerve cells. “This hints at substantial differences in information flow”, states Ralf Sommer. Clearly, the regulation of movements is much more complex in P. pacificus – a finding which correlates perfectly with the predatory feeding behaviour of the worm.

By means of partly newly developed analytical methods the scientists in Tuebingen also compared the relevance of individual neurons and synapses for the entire network. It became obvious that two neurons in the anterior part of the P. pacificus pharynx have significantly gained in importance: They are the motor neurons regulating the muscle cells that control the movement of mouth parts, most prominently the movement of teeth which are not found in C. elegans. “The mouth parts are particularly active during a predatory attack, but not when feeding on bacteria” explains Sommer. In C. elegans, these two neurons function exclusively as interneurons. There are marked differences in the posterior part of the pharynx as well. This is where C. elegans has a specialized muscular “grinder” for crushing bacteria, their only food source. In P. Pacificus, which does not have a grinder, some of the muscle cells have lost synaptic connections with neurons.

“The patterns of synaptic connections perfectly mirror the fundamental differences in the feeding behaviours of P. pacificus and C. elegans”, Ralf Sommer concludes. A clear-cut result like that was not what he had necessarily expected. Previous studies in much simpler neural circuits - as in the marine snail Aplysia – had indicated that changes in behaviour do not have to coincide with changes in number and location of synapses. Differences in physiological properties of neurons or in their modulation by neurotransmitters can be sufficient to effect behavioural changes.

Original Publication:
Daniel J. Bumbarger, Metta Riebesell, Christian Rödelsperger, Ralf J. Sommer. System-Wide Rewiring Underlies Behavioral Differences in Predatory and Bacterial Feeding Nematodes. Cell (2013), 17 January 2013; doi: 10.1016/j.cell.2012.12.013

Ralf J. Sommer
Phone: +49 7071 601- 371
E-mail: ralf.sommer(at)

Dan Bumbarger
Phone: +49 7071 601- 440
E-mail: daniel.bumbarger(at)

Janna Eberhardt | Max-Planck-Institut
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>