Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neural Precursor Cells Induce Cell Death in Certain Brain Tumors

24.07.2012
Neural precursor cells (NPC) in the young brain suppress certain brain tumors such as high-grade gliomas, especially glioblastoma (GBM), which are among the most common and most aggressive tumors.

Now researchers of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch and Charité – Universitätsmedizin Berlin have deciphered the underlying mechanism of action with which neural precursor cells protect the young brain against these tumors. They found that the NPC release substances that activate TRPV1 ion channels in the tumor cells and subsequently induce the tumor cells to undergo stress-induced cell-death. (Nature Medicine http://dx.doi.org/10.1038/nm.2827)*.

Despite surgery, radiation or chemotherapy or even a combination of all three treatment options, there is currently no cure for glioblastoma. In an earlier study the research group led by Professor Helmut Kettenmann (MDC) showed that neural precursor cells migrate to the glioblastoma cells and attack them. The neural precursor cells release a protein belonging to the family of BMP proteins (bone morphogenetic protein) that directly attacks the tumor stem cells. The current consensus of researchers is that tumor stem cells are the actual cause for continuous tumor self-renewal.

Kristin Stock, Jitender Kumar, Professor Kettenmann (all MDC), Dr. Michael Synowitz (MDC and Charité), Professor Rainer Glass (Munich University Hospitals, formerly MDC) and Professor Vincenzo Di Marzo (Istituto di Chimica Biomolecolare Pozzuoli, Naples, Italy) now report a new mechanism of action of NPC in astrocytomas. Like glioblastomas, astrocytomas are brain tumors that belong to the family of gliomas. Gliomas are most common in older people and are almost invariably fatal.

As the MDC researchers showed, the NPC also migrate to the astrocytomas. There they do not secrete proteins, but rather release fatty-acid substances (endovanilloids) which are harmful to the cancer cells. However, in order to exert their lethal effect, the endovanilloids need the aid of a specific ion channel, the TRPV1 channel (transient receptor potential vanilloid type 1), also called the vanilloid receptor 1. TRPV1 is already known to researchers as a transducer of painful stimuli. It has, among other things, a binding site for capsaicin, the irritant of hot chili peppers, and is responsible for the hot sensation after eating them. Clinical trials are currently underway to develop new pain treatments by blocking or desensitizing this ion channel.

MDC researchers describe an additional role of the TRPV1 ion channel
In contrast to its use in pain management, this ion channel, which is located on the surface of glioblastoma cells and is much more abundant there than on normal glial cells, must be activated to trigger cell death in gliomas. The activated ion channel mediates stress-induced cell-death in tumor cells. If however TRPV1 is downregulated or blocked, the glioma cells are not destroyed. The MDC researchers are thus the first to identify neural precursor cells as the source of fatty acids that induce tumor cell death and to describe the role of the TRPV1 ion channel in the fight against gliomas.

However, the activity of neural precursor cells in the brain and thus of the body’s own protective mechanism against gliomas diminishes with increasing age. This could explain why these tumors usually develop in older adults and not in children and young people. How can the natural protection of neural precursor cells be harnessed for older brains? According to the researchers, neural precursor cell therapy is not a solution. The benefit this obviously brings in the treatment of young people can have the opposite effect in older adults and may trigger brain tumors.

One possible treatment would be to use drugs to activate the TRPV1 channels. In mice, the group showed that a synthetic substance (arvanil), which is similar to capsaicin, reduced tumor growth. However, this substance has not yet been approved as a drug because the adverse side effects for humans are too severe. It is only used in basic research on mice, which tolerate the substance well. “In principle, however,” the researchers suggest, “synthetic vanilloid compounds may have clinical potential for brain tumor treatment.”

*Neural precursor cells induce cell-death of high-grade astrocytomas via stimulation of TRPV1

Kristin Stock1*; Jitender Kumar1*; Michael Synowitz1,2*; Stefania Petrosino3; Roberta Imperatore4; Ewan St. J. Smith5,6; Peter Wend7; Bettina Purfürst8; Ulrike A. Nuber9; Ulf Gurok10; Vitali Matyash1; Joo-Hee Wälzlein1; Sridhar R.Chirasani1; Gunnar Dittmar11; Benjamin F. Cravatt12, Stefan Momma13, Gary R. Lewin5, Alessia Ligresti3; Luciano De Petrocellis4; Luigia Cristino4; Vincenzo Di Marzo3; Helmut Kettenmann1*; Rainer Glass14*

*These authors contributed equally.

1 Cellular Neuroscience, 5 Molecular Physiology of Somatic Sensation, 7 Signal Transduction, Epithelial Differentiation, Invasion and Metastasis, 8 Central Facility for Electron Microscopy, 11 Central Facility for Mass Spectrometry; at the Max Delbrück Centre for Molecular Medicine (MDC), 13125 Berlin, Germany.

2 Department of Neurosurgery, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany.

3 Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli (NA), Italy.

4 Endocannabinoid Research Group Institute of Cybernetics, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli (NA), Italy.

6 Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, New York NY 10016

9 Lund Center for Stem Cell Biology and Cell Therapy, Lund University, SE-221 00 Lund, Sweden.

10 Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.

12 The Scripps Research Institute, SR107, 10550 North Torrey Pines Road, La Jolla, CA 92037

13 Restorative Neurology, Institute of Neurology (Edinger-Institute), Johann Wolfgang Goethe-University Frankfurt, 60528 Frankfurt am Main, Germany

14 Neurosurgical Research, Department of Neurosurgery, University of Munich, 81377 Munich, Germany

Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10; 13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96; Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>