Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neural Guidance Gene Regulates Liver Development

06.04.2011
Scientists of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch (Germany) have demonstrated for the first time that a gene regulating neuronal cell migration during embryogenesis also plays a role in the development of the liver.

Using zebrafish as a model organism, Dr. Christian Klein and Professor Ferdinand le Noble showed that the gene navigator-3 (abbreviated nav3a) regulates liver organogenesis. If nav3a is missing, the liver cannot develop (Development 2011, doi:10.1242/dev.056861)*. “Moreover, first evidence indicates,” Dr. Klein said, “that the expression of this gene is dysregulated during the pathogenesis of liver diseases in humans.”



New insights into liver organogenesis in zebrafish embryos (Photo: Christian Klein/Copyright: MDC)


Scientists have known for some time that in the early phase of embryogenesis, neural guidance genes also play a role in the development of the vascular system. This is the focus of the research group “Angiogenesis and Cardiovascular Pathology” led by Professor le Noble. Dr. Klein, a member of this research group, discovered during his study of zebrafish that the navigator gene nav3a is also crucial for liver organogenesis.

In the zebrafish embryo, the navigator gene is active in the precursor cells of the liver. If it is missing, the liver cannot develop. The navigator gene, as its name implies, guides the cells in their migration. In a further step the researchers showed that nav3a optimizes cytoskeletal modulation in the cells, precisely orchestrating the migration of the cells to their determined destination, at which they subsequently form the liver. The production of the navigator gene is initiated by the signaling molecule wnt2bb, which belongs to a gene family that has key functions in organogenesis.

First evidence that dysregulated expression of nav3a is involved in liver diseases

The study of developmental processes in zebrafish embryos is also important for research into human diseases. According to Dr. Klein there are first indications “that dysregulated expression of nav3a is involved in the pathogenesis of liver cancer and liver cirrhosis in humans. Nav3a could thus be an important therapeutic target.”

*Neuron navigator 3a regulates liver organogenesis during zebrafish embryogenesis

Christian Klein1, Janine Mikutta1, Janna Krueger1,2, Katja Scholz1, Joep Brinkmann1, Dong Liu1, Justus Veerkamp3, Doreen Siegel4, Salim Abdelilah-Seyfried3 and Ferdinand le Noble1,2,

1Department of Angiogenesis and Cardiovascular Pathology, Max Delbrück Center for Molecular Medicine (MDC), D-13125 Berlin, Germany. 2Center for Stroke Research Berlin (CSB), 10117 Berlin, Germany. 3Department of. Epithelial Polarity and Zebrafish Genetics, Max Delbrück Center for Molecular Medicine (MDC), D-13125 Berlin, Germany. 4Institute of Biochemistry, University of Ulm, D-89091, Ulm, Germany.

*Author for correspondence (lenoble@mdc-berlin.de)

Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10
13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/
http://dev.biologists.org/content/early/2011/04/06/dev.056861.full.pdf+html

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>