Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On your last nerve: NC State researchers advance understanding of stem cells

19.11.2009
Researchers from North Carolina State University have identified a gene that tells embryonic stem cells in the brain when to stop producing nerve cells called neurons.

The research is a significant advance in understanding the development of the nervous system, which is essential to addressing conditions such as Parkinson's disease, Alzheimer's disease and other neurological disorders.

The bulk of neuron production in the central nervous system takes place before birth, and comes to a halt by birth. But scientists have identified specific regions in the core of the brain that retain stem cells into adulthood and continue to produce new neurons.

NC State researchers, investigating the subventricular zone, one of the regions that retains stem cells, have identified a gene that acts as a switch – transforming some embryonic stem cells into adult cells that can no longer produce new neurons. The research was done using mice. These cells form a layer of cells that support adult stem cells. The gene, called FoxJ1, increases its activity near the time of birth, when neural development slows down. However, the FoxJ1 gene is not activated in most of the stem cells in the subventricular zone – where new neurons continue to be produced into adulthood.

"Research into why and how some stem cells in the subventricular zone continue to produce new neurons is important because a biological understanding of how these cells function can contribute to new treatments to replace damaged or diseased brain tissue, hopefully in regions that cannot do this by themselves," says Dr. Troy Ghashghaei, an assistant professor of neurobiology at NC State and the senior author of the research. "This research helps us understand brain development itself, which is key to identifying novel approaches for treatment of many neurological disorders."

When the FoxJ1 gene is activated, it produces a protein that functions as a transcription factor. Transcription factors swim through the nucleus of a cell turning other genes on and off, turning the embryonic stem cell into an adult cell. Some of the adult cells will function as stem cells, creating new neurons, but most will not – instead serving to support the adult stem cells by forming a stem cell "niche." This niche has a complex cellular architecture that allows adult stem cells to remain active in the subventricular zone.

Ghashghaei's lab is now moving forward with new research to determine what activates the FoxJ1 gene and how the FoxJ1 protein regulates the expression of other genes. This understanding will reveal how the activation and inactivation of genes controlled by FoxJ1 orchestrates the development of the adult stem cell niche. Ghashghaei's laboratory is a recent recipient of funding from the National Institutes of Health to support this line of research.

The research was co-authored by members of the Ghashghaei laboratory at NC State including graduate students Benoit Jacquet and Huixuan Liang, research associates Raul Salinas-Mondragon, Blair Therit and Michael Dykstra, as well as a biochemistry undergraduate student Justin Buie. The work was in part a collaboration with investigators from the Cincinnati Children's Hospital Medical Center, UNC at Chapel Hill, and Washington University in St. Louis. The paper, "FoxJ1-dependent gene expression is required for differentiation of radial glia into ependymal cells and a subset of astrocytes in the postnatal brain," is a featured article in the current issue of the journal Development.

Matt Shipman | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>