Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nerve cells with a sense of rhythm

25.08.2016

Neuroscientists at the German Primate Center show how nerve cells communicate with each other in neural networks

Thinking, feeling, acting - our brain is the control center in the head that steers everything we do. A network of about 100 billion nerve cells linked together by around 100 trillion synapses provides the basis for these mechanisms.


Schematic representation of the network structure of the brain areas AIP, F5 and M1. Gray areas: modules, red, blue and violet dots: nodes or hubs, blue broken line: rich-club

Figure: Benjamin Dann

Neuroscientists at the German Primate Center (DPZ) – Leibniz Institute for Primate Research examined for the first time how this neural network is organized and how the flow of information between different brain areas is coordinated at the level of individual nerve cells.

Through studies with rhesus monkeys, they have found that the nerve cells in the different brain areas that control our hand movements strongly interact with each other and are organized in cross-area functional groups. They also showed that a few neurons control the network by acting as central nodes (hubs) and coordinate the flow of information within the nerve cell network. These hubs also greatly communicate with each other (rich-club) and thus form an area-spanning backbone for communication.

Interestingly, the type of communication between hubs differs from that of the remaining network. Information processing through hubs is characterized by their rhythmic activity that is synchronized to one another. This suggests that large groups of neurons synchronize rhythmically to connect parts of the brain together in order to solve specific tasks (eLife, 2016).

The performances of our brain like thinking, remembering, perceiving and motion control can only arise through the interaction of the network of nerve cells. It is the subject of numerous research projects to examine how this network is structured. Through graph theoretical approaches and brain studies like electroencephalography (EEG) or functional magnetic resonance imaging (fMRI), it has been known for some time that various regions of the brain are organized as a complex network, which enables fast and fault-resistant information processing. Using these methods, it is not possible to measure the activity of individual nerve cells. However, this is necessary to understand how such neural diseases like schizophrenia and autism arise.

Studies on nerve cell level

“In our study, we want to find out how the network of individual nerve cells is organized through several brain areas”, says Benjamin Dann, PhD student in the Neurobiology Laboratory at the German Primate Center and lead author of the study. “We also wanted to know exactly how the flow of information between nerve cells of different brain areas is coordinated.” For this, three rhesus monkeys were trained to repeatedly execute a grasping task. During the task, the activity of nerve cells in three different areas of the brain, the anterior intraparietal cortex (AIP), the premotor cortex (F5), and the primary motor cortex (M1) was measured by so-called microelectrode arrays. These brain regions form a neural network that controls the planning and execution of hand movements.

Nerve cells in the rich-club fire rhythmically

The scientists found that the nerve cells of all three brain areas form a strong interconnected network, which is organized in turn into functional subunits (modules). Surprisingly, these modules do not correspond to the three considered brain areas. 84 percent of the modules were not limited to one area, but also included nerve cells of the other two areas. Moreover, they could show that there are individual neurons within the network, which play a central role. “These nodes or hubs have disproportionately more connections on the network than the other nerve cells”, Benjamin Dann explains. “In addition, they are highly interconnected and form a so-called rich-club at the cellular level, which can be used to coordinate the information routing in the network.”

Furthermore, the scientists observed that the nerve cells are rhythmically active in the rich-club and also communicate with the rest of the network rhythmically. The other nerve cells, however, are mainly arrhythmicly active. “We were the first to show that the rhythmic activity in fixed frequencies is an important feature of the central hub and rich-club cells that coordinate the information flow”, Benjamin Dann summarizes his results. “We assume that rhythmic synchrony of neurons is a key mechanism for fast and robust communication throughout the brain. Thus, even distant groups of neurons can be functionally connected to perform certain thoughts or actions.”

The study may contribute in the future to a better understanding of neuronal diseases such as schizophrenia and autism that are affected by interference from rhythmic synchrony and alterations in the network structure. Accurate knowledge of these processes in the brain is important in order to develop new therapies.

Original publication

Dann, B., Michaels, J., Schaffelhofer, S., Scherberger H. (2016): Uniting functional network topology and oscillations in the fronto-parietal single unit network of behaving primates. eLife, DOI: http://dx.doi.org/10.7554/eLife.15719

Contact and notes for editors

Benjamin Dann
Phone: +49 551 3851-484
Email: bdann@dpz.eu

Prof. Dr. Hansjörg Scherberger
Phone: +49 551 3851-494
Email: hscherberger@dpz.eu

Dr. Sylvia Siersleben (Communication)
Phone: +49 551 3851-163
Email: ssiersleben@dpz.eu

Printable pictures and captions are available in our media library. This press release with additional information is also to be found on our website. Please send us a copy or link in case of publication.

The German Primate Center (DPZ) – Leibniz Institute for Primate Research conducts biological and biomedical research on and with primates in the fields of infection research, neuroscience and primate biology. In addition, it operates four field stations in the tropics and is a reference and service center for all aspects of primate research. The DPZ is one of the 88 research and infrastructure institutes of the Leibniz Association in Germany.

Weitere Informationen:

http://www.dpz.eu - Homepage German Primate Center
http://www.dpz.eu/en/home/single-view/news/nervenzellen-mit-rhythmusgefuehl-1.ht... - Press release with further information
http://medien.dpz.eu/webgate/keyword.html?currentContainerId=3481 - Media library with prinable pictures

Dr. Susanne Diederich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>