Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Nerve Cells Distinguish Odors

29.04.2010
Heidelberg neuroscientists verify for the first time the function of inhibiting communication / Published in “Neuron”

Whether different odors can be quickly distinguished depends on certain synapses in the brain that inhibit nerve stimulation. The researchers in Professor Dr. Thomas Kuner’s team at the Institute of Anatomy and Cell Biology at Heidelberg University Medical School and Dr. Andreas Schäfer at the Max Planck Institute for Medical Research have shown that mice in which a certain receptor in the olfactory center is missing can distinguish similar smells more quickly than mice without genetic manipulation. This behavior was directly attributed to inhibitor loops between adjacent nerve cells.

The discovery of the activation principle of “lateral inhibition” in the eye 43 years ago by Haldan K. Hartline, George Wald, and Ragnar Granit was honored with a Nobel Prize. The Heidelberg researchers have for the first time succeeded in confirming the same mechanism for the olfactory system, from the molecular level to behavior. The results of the studies were published in the prestigious journal “Neuron”.

Odors attach to receptors of olfactory cells in nasal mucosa, where they trigger nerve signals. These signals are processed in what is known as the olfactory bulb, a part of the brain. In the neuronal network, the incoming signal is converted to a specific electrical pattern that is transmitted to the cerebral cortex and other areas of the brain and is recognized there.

Local inhibitor loops make recognizing smells more precise

Professor Kuner and his team have now shown for the first time how neuronal processing of olfactory stimuli directly affects the behavior of test animals. “We manipulated information processing very specifically in the olfactory bulb and then measured the effect of this genetic manipulation based on reaction time. We were thus able to prove that the test animals, due to localized inhibitor loops, could distinguish very similar odor combinations much faster, yet very reliably,” explained Professor Kuner.

Inhibition via interneurons acts as a kind of filter by amplifying strong stimuli and further weakening weak stimuli. This makes the essential information easier to recognize. In the test animals, reaction time was reduced by about 50 ms. The time needed by test animals to learn various odors and their memory capability remained unaffected. Recognition of simple odors was also unchanged.

The researchers delivered a certain enzyme, cre recombinase, directly into the nerve cells of the olfactory bulb of young mice via a viral gene ferry. In the genome of these mice, a certain gene segment was removed using genetically introduced recognition sites of these enzymes. This led to the deletion of a receptor in the interneurons. This targeted manipulation made the inhibitor loops especially active. Using the usual “knock-out” models, in which the gene is deactivated in the entire body, the subsequent selective behavior could not have been observed. In a sophisticated experimental design, the mice then had to learn to recognize simple and complex odors composed of several aromatic substances. Using electrophysiological measurements, imaging processes, and anatomical techniques, a link was then created from the molecule to behavior.

References:

NM Abraham, V Egger, DR Shimshek, R Renden, I Fukunaga, R Sprengel, PH Seeburg, M Klugmann, TW Margrie, AT Schaefer, T Kuner. Synaptic inhibition in the olfactory bulb accelerates odor discrimination in mice. Neuron, 2010, 65: 399–411

DOI 10.1016/j.neuron.2010.01.009

For more information in the Internet:
www.ana.uni-heidelberg.de/english/resarch-groups/medical-cell-biology/kuner-group.html

Contact person:

Professor Dr. Thomas Kuner
Institute for Anatomy and Cell Biology
University of Heidelberg
Im Neuenheimer Feld 307
69120 Heidelberg
phone: +49 6221 / 54 86 78
fax: +49 6221 / 54 49 52
e-mail: kuner@uni-heidelberg.de
Heidelberg University Hospital and Medical Faculty:
Internationally recognized patient care, research, and teaching
Heidelberg University Hospital is one of the largest and most prestigious medical centers in Germany. The Medical Faculty of Heidelberg University belongs to the internationally most renowned biomedical research institutions in Europe. Both institutions have the common goal of developing new therapies and implementing them rapidly for patients. With about 7,600 employees, training and qualification is an important issue. Every year, around 550,000 patients are treated on an inpatient or outpatient basis in more than 40 clinics and departments with 2,000 beds. Currently, about 3,400 future physicians are studying in Heidelberg; the reform Heidelberg Curriculum Medicinale (HeiCuMed) is one of the top medical training programs in Germany.
Requests by journalists:
Dr. Annette Tuffs
Head of Public Relations and Press Department
University Hospital of Heidelberg and
Medical Faculty of Heidelberg
Im Neuenheimer Feld 672
D-69120 Heidelberg
Germany
phone: +49 6221 / 56 45 36
fax: +49 6221 / 56 45 44
e-mail: annette.tuffs(at)med.uni-heidelberg.de

Dr. Thomas Kuner | EurekAlert!
Further information:
http://www.uni-heidelberg.de

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>