Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Nerve Cells Distinguish Odors

29.04.2010
Heidelberg neuroscientists verify for the first time the function of inhibiting communication / Published in “Neuron”

Whether different odors can be quickly distinguished depends on certain synapses in the brain that inhibit nerve stimulation. The researchers in Professor Dr. Thomas Kuner’s team at the Institute of Anatomy and Cell Biology at Heidelberg University Medical School and Dr. Andreas Schäfer at the Max Planck Institute for Medical Research have shown that mice in which a certain receptor in the olfactory center is missing can distinguish similar smells more quickly than mice without genetic manipulation. This behavior was directly attributed to inhibitor loops between adjacent nerve cells.

The discovery of the activation principle of “lateral inhibition” in the eye 43 years ago by Haldan K. Hartline, George Wald, and Ragnar Granit was honored with a Nobel Prize. The Heidelberg researchers have for the first time succeeded in confirming the same mechanism for the olfactory system, from the molecular level to behavior. The results of the studies were published in the prestigious journal “Neuron”.

Odors attach to receptors of olfactory cells in nasal mucosa, where they trigger nerve signals. These signals are processed in what is known as the olfactory bulb, a part of the brain. In the neuronal network, the incoming signal is converted to a specific electrical pattern that is transmitted to the cerebral cortex and other areas of the brain and is recognized there.

Local inhibitor loops make recognizing smells more precise

Professor Kuner and his team have now shown for the first time how neuronal processing of olfactory stimuli directly affects the behavior of test animals. “We manipulated information processing very specifically in the olfactory bulb and then measured the effect of this genetic manipulation based on reaction time. We were thus able to prove that the test animals, due to localized inhibitor loops, could distinguish very similar odor combinations much faster, yet very reliably,” explained Professor Kuner.

Inhibition via interneurons acts as a kind of filter by amplifying strong stimuli and further weakening weak stimuli. This makes the essential information easier to recognize. In the test animals, reaction time was reduced by about 50 ms. The time needed by test animals to learn various odors and their memory capability remained unaffected. Recognition of simple odors was also unchanged.

The researchers delivered a certain enzyme, cre recombinase, directly into the nerve cells of the olfactory bulb of young mice via a viral gene ferry. In the genome of these mice, a certain gene segment was removed using genetically introduced recognition sites of these enzymes. This led to the deletion of a receptor in the interneurons. This targeted manipulation made the inhibitor loops especially active. Using the usual “knock-out” models, in which the gene is deactivated in the entire body, the subsequent selective behavior could not have been observed. In a sophisticated experimental design, the mice then had to learn to recognize simple and complex odors composed of several aromatic substances. Using electrophysiological measurements, imaging processes, and anatomical techniques, a link was then created from the molecule to behavior.

References:

NM Abraham, V Egger, DR Shimshek, R Renden, I Fukunaga, R Sprengel, PH Seeburg, M Klugmann, TW Margrie, AT Schaefer, T Kuner. Synaptic inhibition in the olfactory bulb accelerates odor discrimination in mice. Neuron, 2010, 65: 399–411

DOI 10.1016/j.neuron.2010.01.009

For more information in the Internet:
www.ana.uni-heidelberg.de/english/resarch-groups/medical-cell-biology/kuner-group.html

Contact person:

Professor Dr. Thomas Kuner
Institute for Anatomy and Cell Biology
University of Heidelberg
Im Neuenheimer Feld 307
69120 Heidelberg
phone: +49 6221 / 54 86 78
fax: +49 6221 / 54 49 52
e-mail: kuner@uni-heidelberg.de
Heidelberg University Hospital and Medical Faculty:
Internationally recognized patient care, research, and teaching
Heidelberg University Hospital is one of the largest and most prestigious medical centers in Germany. The Medical Faculty of Heidelberg University belongs to the internationally most renowned biomedical research institutions in Europe. Both institutions have the common goal of developing new therapies and implementing them rapidly for patients. With about 7,600 employees, training and qualification is an important issue. Every year, around 550,000 patients are treated on an inpatient or outpatient basis in more than 40 clinics and departments with 2,000 beds. Currently, about 3,400 future physicians are studying in Heidelberg; the reform Heidelberg Curriculum Medicinale (HeiCuMed) is one of the top medical training programs in Germany.
Requests by journalists:
Dr. Annette Tuffs
Head of Public Relations and Press Department
University Hospital of Heidelberg and
Medical Faculty of Heidelberg
Im Neuenheimer Feld 672
D-69120 Heidelberg
Germany
phone: +49 6221 / 56 45 36
fax: +49 6221 / 56 45 44
e-mail: annette.tuffs(at)med.uni-heidelberg.de

Dr. Thomas Kuner | EurekAlert!
Further information:
http://www.uni-heidelberg.de

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>