Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nectar: a sweet reward from plants to attract pollinators

17.03.2014

Plants as largely immobile organisms had to solve a problem: they needed to find ways to spread their genetic material beyond individual flowers.

To make sure that flying pollinators such as insects, birds and bats come to the flowers to pick up pollen, plants evolved special organs, the nectaries to attract and reward the animals.


Flowers of wild tobacco Nicotiana attenuata

Danny Kessler / Max Planck Institute for Chemical Ecology


Ovary and nectary (orange) of a Nicotiana attenuata flower.

Danny Kessler / Max Planck Institute for Chemical Ecology

Scientists have now identified the sugar transporter that plays a key role in plants’ nectar production. SWEET9 transports sugar into extracellular areas of the nectaries where nectar is secreted. Thus, SWEET9 may have been crucial for the evolution of flowering plants that attract and reward pollinators with sweet nectar.

Flowering plants need sugar transporter SWEET9 for nectar production

Evolution is based on diversity, and sexual reproduction is key to creating a diverse population that secures competitiveness in nature. Plants as largely immobile organisms had to solve a problem: they needed to find ways to spread their genetic material beyond individual flowers. To make sure that flying pollinators such as insects, birds and bats come to the flowers to pick up pollen, plants evolved special organs, the nectaries to attract and reward the animals.

Scientists from the Max Planck Institute for Chemical Ecology in Jena (Germany) and their colleagues from Stanford and Duluth (USA) have identified the sugar transporter that plays a key role in plants’ nectar production. SWEET9 transports sugar into extracellular areas of the nectaries where nectar is secreted. Thus, SWEET9 may have been crucial for the evolution of flowering plants that attract and reward pollinators with sweet nectar. (Nature, March 16, 2014, doi: 10.1038/nature13082)

Despite the obvious importance of nectar, the process by which plants manufacture and secrete it has remained a mystery. New research from a team led by Wolf Frommer, director of the Plant Biology Department, Carnegie Institution for Science in Stanford, in collaboration with the Carter lab in Minnesota and the Baldwin lab at the Max Planck Institute for Chemical Ecology in Jena, Germany, now identified key components of the sugar synthesis and secretion mechanisms. Their work also suggests that the components were recruited for this purpose early during the evolution of flowering plants. Their work is published by Nature.

The team used advanced techniques to search for transporters that could be involved in sugar transport and were present in nectaries. They identified SWEET9 as a key player in three diverse flowering plant species, thale cress Arabidopsis thaliana, turnip Brassica rapa and coyote tobacca Nicotiana attenuata, and demonstrated that it is essential for nectar production.

 In specially engineered plants lacking SWEET9, the team found that nectar secretion did not occur but sugars rather accumulated in the stems. They also identified genes necessary for the production of sucrose, which turn out to be also essential for nectar secretion. Taken together, their work shows that sucrose is manufactured in the nectary and then transported into the extracellular space of nectaries by SWEET9. In this interstitial area the sugar is converted into a mixture of sucrose and other sugars, namely glucose and fructose. In the plants tested these three sugars comprise the majority of solutes in the nectar, a prerequisite for collection by bees for honey production.

“SWEETs are key transporters for transporting photosynthates from leaves to seeds and we believe that the nectarial SWEET9 sugar transporter evolved around the time of the formation of the first floral nectaries, and that this process may have been a major step in attracting and rewarding pollinators and thus increasing the genetic diversity of plants,” Frommer said. 

Original Publication:
Lin, W., Sosso, D., Chen, L.-Q., Gase, K., Kim, S.-G., Kessler, D., Klinkenberg, P. M., Gorder, M., Hou, B.-H., Qu, X.-Q., Carter, C., Baldwin, I. T., Frommer, W. (2014). Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature, March 16, 2014, doi: 10.1038/nature13082
http://dx.doi.org/10.1038/nature13082

Further Information:
Wolf Frommer, Carnegie Institution for Science, Stanford CA, USA, Tel. +1 650 325-1521 x208, e-mail wfrommer@carnegiescience.edu
Ian T. Baldwin, Max Planck Institute for Chemical Ecology, Jena, Germany, Tel. +49 3641 57-1100, e-mail: baldwin@ice.mpg.de

Contact and Picture Requests:
Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, overmeyer@ice.mpg.de

Download of high-resolution images via http://www.ice.mpg.de/ext/735.html

Weitere Informationen:

http://www.ice.mpg.de/ext/1064.html

Angela Overmeyer | Max-Planck-Institut

Further reports about: Ecology Institute Max-Planck-Institut Nature Planck animals diversity sugar Ökologie

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>