Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nectar: a sweet reward from plants to attract pollinators

17.03.2014

Plants as largely immobile organisms had to solve a problem: they needed to find ways to spread their genetic material beyond individual flowers.

To make sure that flying pollinators such as insects, birds and bats come to the flowers to pick up pollen, plants evolved special organs, the nectaries to attract and reward the animals.


Flowers of wild tobacco Nicotiana attenuata

Danny Kessler / Max Planck Institute for Chemical Ecology


Ovary and nectary (orange) of a Nicotiana attenuata flower.

Danny Kessler / Max Planck Institute for Chemical Ecology

Scientists have now identified the sugar transporter that plays a key role in plants’ nectar production. SWEET9 transports sugar into extracellular areas of the nectaries where nectar is secreted. Thus, SWEET9 may have been crucial for the evolution of flowering plants that attract and reward pollinators with sweet nectar.

Flowering plants need sugar transporter SWEET9 for nectar production

Evolution is based on diversity, and sexual reproduction is key to creating a diverse population that secures competitiveness in nature. Plants as largely immobile organisms had to solve a problem: they needed to find ways to spread their genetic material beyond individual flowers. To make sure that flying pollinators such as insects, birds and bats come to the flowers to pick up pollen, plants evolved special organs, the nectaries to attract and reward the animals.

Scientists from the Max Planck Institute for Chemical Ecology in Jena (Germany) and their colleagues from Stanford and Duluth (USA) have identified the sugar transporter that plays a key role in plants’ nectar production. SWEET9 transports sugar into extracellular areas of the nectaries where nectar is secreted. Thus, SWEET9 may have been crucial for the evolution of flowering plants that attract and reward pollinators with sweet nectar. (Nature, March 16, 2014, doi: 10.1038/nature13082)

Despite the obvious importance of nectar, the process by which plants manufacture and secrete it has remained a mystery. New research from a team led by Wolf Frommer, director of the Plant Biology Department, Carnegie Institution for Science in Stanford, in collaboration with the Carter lab in Minnesota and the Baldwin lab at the Max Planck Institute for Chemical Ecology in Jena, Germany, now identified key components of the sugar synthesis and secretion mechanisms. Their work also suggests that the components were recruited for this purpose early during the evolution of flowering plants. Their work is published by Nature.

The team used advanced techniques to search for transporters that could be involved in sugar transport and were present in nectaries. They identified SWEET9 as a key player in three diverse flowering plant species, thale cress Arabidopsis thaliana, turnip Brassica rapa and coyote tobacca Nicotiana attenuata, and demonstrated that it is essential for nectar production.

 In specially engineered plants lacking SWEET9, the team found that nectar secretion did not occur but sugars rather accumulated in the stems. They also identified genes necessary for the production of sucrose, which turn out to be also essential for nectar secretion. Taken together, their work shows that sucrose is manufactured in the nectary and then transported into the extracellular space of nectaries by SWEET9. In this interstitial area the sugar is converted into a mixture of sucrose and other sugars, namely glucose and fructose. In the plants tested these three sugars comprise the majority of solutes in the nectar, a prerequisite for collection by bees for honey production.

“SWEETs are key transporters for transporting photosynthates from leaves to seeds and we believe that the nectarial SWEET9 sugar transporter evolved around the time of the formation of the first floral nectaries, and that this process may have been a major step in attracting and rewarding pollinators and thus increasing the genetic diversity of plants,” Frommer said. 

Original Publication:
Lin, W., Sosso, D., Chen, L.-Q., Gase, K., Kim, S.-G., Kessler, D., Klinkenberg, P. M., Gorder, M., Hou, B.-H., Qu, X.-Q., Carter, C., Baldwin, I. T., Frommer, W. (2014). Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature, March 16, 2014, doi: 10.1038/nature13082
http://dx.doi.org/10.1038/nature13082

Further Information:
Wolf Frommer, Carnegie Institution for Science, Stanford CA, USA, Tel. +1 650 325-1521 x208, e-mail wfrommer@carnegiescience.edu
Ian T. Baldwin, Max Planck Institute for Chemical Ecology, Jena, Germany, Tel. +49 3641 57-1100, e-mail: baldwin@ice.mpg.de

Contact and Picture Requests:
Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, overmeyer@ice.mpg.de

Download of high-resolution images via http://www.ice.mpg.de/ext/735.html

Weitere Informationen:

http://www.ice.mpg.de/ext/1064.html

Angela Overmeyer | Max-Planck-Institut

Further reports about: Ecology Institute Max-Planck-Institut Nature Planck animals diversity sugar Ökologie

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>