In the ‘Neck’ of Time: Scientists Unravel Another Key Evolutionary Trait Leading to Better Brain Power

Scientists had assumed the pectoral fins in fish and the forelimbs (arms and hands) in humans are innervated – or receive nerves – from the exact same neurons. After all, the fins on fish and the arms on humans seem to be in the same place on the body. Not so.

During our early ancestors’ transition from fish to land-dwellers that gave rise to upright mammals, the source for neurons that directly control the forelimbs moved from the brain into the spinal cord, as the torso moved away from the head and was given a neck. In other words human arms, like the wings of bats and birds, became separate from the head and placed on the torso below the neck.

“A neck allowed for improved movement and dexterity in terrestrial and aerial environments,” says Andrew Bass, Cornell professor of neurobiology and behavior, and an author on the paper. “This innovation in biomechanics evolved hand-in-hand with changes in how the nervous system controls our limbs.”

Bass explained that this unexpected level of evolutionary plasticity likely accounts for the incredible range of forelimb abilities – from their use in flight by birds to swimming by whales and dolphins, and playing piano for humans.

The research, “Ancestry of motor innervation to pectoral fin and forelimb,” was authored by Leung-Hang Ma (first author) and Robert Baker (corresponding author), both of Department of Physiology and Neuroscience, New York University Langone Medical Center; Edward Gilland, Department of Anatomy, Howard University; and Bass. All four researchers are affiliated with the Marine Biological Laboratory, Woods Hole, Mass.

The National Institutes of Health and the National Science Foundation funded the research.

Media Contact

Blaine Friedlander Newswise Science News

More Information:

http://www.cornell.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors