Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In the ‘Neck’ of Time: Scientists Unravel Another Key Evolutionary Trait Leading to Better Brain Power

29.07.2010
By deciphering the genetics in humans and fish, scientists now believe that the neck – that little body part between your head and shoulders – gave humans so much freedom of movement that it played a surprising and major role in the evolution of the human brain, according to New York University and Cornell University neuroscientists in the online journal Nature Communications (July 27, 2010.)

Scientists had assumed the pectoral fins in fish and the forelimbs (arms and hands) in humans are innervated – or receive nerves - from the exact same neurons. After all, the fins on fish and the arms on humans seem to be in the same place on the body. Not so.

During our early ancestors’ transition from fish to land-dwellers that gave rise to upright mammals, the source for neurons that directly control the forelimbs moved from the brain into the spinal cord, as the torso moved away from the head and was given a neck. In other words human arms, like the wings of bats and birds, became separate from the head and placed on the torso below the neck.

“A neck allowed for improved movement and dexterity in terrestrial and aerial environments,” says Andrew Bass, Cornell professor of neurobiology and behavior, and an author on the paper. “This innovation in biomechanics evolved hand-in-hand with changes in how the nervous system controls our limbs.”

Bass explained that this unexpected level of evolutionary plasticity likely accounts for the incredible range of forelimb abilities – from their use in flight by birds to swimming by whales and dolphins, and playing piano for humans.

The research, “Ancestry of motor innervation to pectoral fin and forelimb,” was authored by Leung-Hang Ma (first author) and Robert Baker (corresponding author), both of Department of Physiology and Neuroscience, New York University Langone Medical Center; Edward Gilland, Department of Anatomy, Howard University; and Bass. All four researchers are affiliated with the Marine Biological Laboratory, Woods Hole, Mass.

The National Institutes of Health and the National Science Foundation funded the research.

Blaine Friedlander | Newswise Science News
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>