Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neandertals made the first specialized bone tools in Europe

13.08.2013
New finds demonstrate: Neandertals were the first in Europe to make standardized and specialized bone tools – which are still in use today

Two research teams from the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, and the University of Leiden in the Netherlands have jointly reported the discovery of Neandertal bone tools coming from their excavations at two neighboring Paleolithic sites in southwest France.


Four views of the most complete lissoir found during excavations at the Neandertal site of Abri Peyrony. © Abri Peyrony & Pech-de-l’Azé I Projects

The tools are unlike any others previously found in Neandertal sites, but they are similar to a tool type well known from later modern human sites and still in use today by high-end leather workers. This tool, called a lissoir or smoother, is shaped from deer ribs and has a polished tip that, when pushed against a hide, creates softer, burnished and more water resistant leather. The bone tool is still used today by leather workers some 50 thousand years after the Neandertals and the first anatomically modern humans in Europe.

Modern humans replaced Neandertals in Europe about 40 thousand years ago, but the Neandertals’ capabilities are still greatly debated. Some argue that before they were replaced, Neandertals had cultural capabilities similar to modern humans, while others argue that these similarities only appear once modern humans came into contact with Neandertals.

“For now the bone tools from these two sites are one of the better pieces of evidence we have for Neandertals developing on their own a technology previously associated only with modern humans”, explains Shannon McPherron of the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany. He and Michel Lenoir of the University of Bordeaux have been excavating the site of Abri Peyrony where three of the bones were found.

"If Neandertals developed this type of bone tool on their own, it is possible that modern humans then acquired this technology from Neandertals. Modern humans seem to have entered Europe with pointed bone tools only, and soon after started to make lissoirs. This is the first possible evidence for transmission from Neandertals to our direct ancestors,” says Marie Soressi of Leiden University in The Netherlands. With William Rendu of the CNRS, Soressi and her team found the first of four bone tools during their excavation at the classic Neandertal site of Pech-de-l’Azé I.

However, we cannot eliminate the possibility that these tools instead indicate that modern humans entered Europe and started impacting Neandertal behavior earlier than we can currently demonstrate. Resolving this problem will require sites in central Europe with better bone preservation.

How widespread this new Neandertal behavior was is a question that remains. The first three found were fragments less than a few centimeters long and might not have been recognized without experience working with later period bone tools. It is not something normally looked for in this time period. “However, when you put these small fragments together and compare them with finds from later sites, the pattern in them is clear”, comments McPherron. “Then last summer we found a larger, more complete tool that is unmistakably a lissoir like those we find in later, modern human sites or even in leather workshops today.”

Microwear analysis conducted by Yolaine Maigrot of the CNRS on of one of the bone tools shows traces compatible with use on soft material like hide. Modern leather workers still use similar tools today. “Lissoirs like these are a great tool for working leather, so much so that 50 thousand years after Neandertals made these, I was able to purchase a new one on the Internet from a site selling tools for traditional crafts,” says Soressi. “It shows that this tool was so efficient that it had been maintained through time with almost no change. It might be one or perhaps even the only heritage from Neandertal times that our society is still using today.”

These are not the first Neandertal bone tools, but up to now their bone tools looked like stone tools and were made with stone knapping percussive techniques. “Neandertals sometimes made scrapers, notched tools and even handaxes from bone. They also used bone as hammers to resharpen their stone tools,” says McPherron. “But here we have an example of Neandertals taking advantage of the pliability and flexibility of bone to shape it in new ways to do things stone could not do.”

The bone tools were found in deposits containing typical Neandertal stone tools and the bones of hunted animals including horses, reindeer, red deer and bison. At both Abri Peyrony and Pech-de-l’Azé I, there is no evidence of later occupations by modern humans that could have contaminated the underlying levels. Both sites have only evidence of Neandertals.

To know the age of the bone tools, Sahra Talamo of the Max Planck Institute for Evolutionary Anthropology applied radiocarbon dating to bones found near the bone tools themselves. At Pech-de-l’Azé I, Zenobia Jacobs of the University of Wollongong applied optically stimulated luminescence (OSL) dating to sediments from the layer with the bone tool. The results place the Pech-de-l’Azé I bone tool to approximately 50 thousand years ago. This is well before the best evidence of modern humans in Western Europe, and it is much older than any other examples of sophisticated bone tool technologies.

Shannon P. McPherron is the senior archaeologist in the Department of Human Evolution at the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany. He excavates in Ethiopia, Morocco and southwest France, and started the Abri Peyrony project along with Dr. Michel Lenoir of the CNRS in 2009. The goal of his work in southwest France is to better understand Neandertal adaptations just prior to the arrival of modern humans. In Africa his research is focused on the archaeology of anatomically modern humans contemporary with European Neandertals and on the earliest evidence for stone tool use.

Marie Soressi is assistant professor at Leiden University in the Netherlands. Through on-going or recent multidisciplinary and international excavations that she is leading, she focuses on better understanding the demise of Neandertals and the expansion of anatomically modern human populations. She excavates in France, and has also worked in South-Africa. She is a research associate to the Department of Human Evolution at the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, and recently acted as project leader for the French National Institute for Preventive Archaeology (INRAP).

Excavation permits and funding were provided by the Musée National de Préhistoire des Eyzies, the Service Régional de l’Archéologie d’Aquitaine, the Service Départemental de l’Archéologie de la Dordogne, the Commission inter-régionale de la Recherche Archéologique d’Aquitaine, the Conseil Général de Dordogne, the Australian Research Council (DP1092438) and the Max Planck Society.

Contact

Dr. Shannon McPherron
Dept. of Human Evolution
Max Planck Institute for Evolutionary Anthropology, Leipzig
Phone: +49 176 23346343
Email: mcpherron@­eva.mpg.de
Dr. Marie Soressi
University of Leiden
Phone: +33 6 71923867
Email: soressi@­eva.mpg.de
Sandra Jacob
Press and Public Relations
Max Planck Institute for Evolutionary Anthropology, Leipzig
Phone: +49 341 3550-122
Fax: +49 341 3550-119
Email: info@­eva.mpg.de
Original publication
Marie Soressi, Shannon P. McPherron, Michel Lenoir, Tamara Dogandžiæ, Paul Goldberg, Zenobia Jacobs, Yolaine Maigrot, Naomi Martisius, Christopher E. Miller, William Rendu, Michael P. Richards, Matthew M. Skinner, Teresa E. Steele, Sahra Talamo, Jean-Pierre Texier
Neandertals Made the First Specialized Bone Tools in Europe
PNAS, August 12, 2013

Dr. Shannon McPherron | Max-Planck-Institute
Further information:
http://www.mpg.de/7494657/neandertals_leather_tools?filter_order=L&research_topic=

More articles from Life Sciences:

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

nachricht Inactivate vaccines faster and more effectively using electron beams
23.03.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

Inactivate vaccines faster and more effectively using electron beams

23.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>