NC State finds new nanomaterial could be breakthrough for implantable medical devices

The researchers have found that the unique properties of a new material can be used to create new devices that can be implanted into the human body – including blood glucose sensors for diabetics and artificial hemo-dialysis membranes that can scrub impurities from the blood.

Researchers have long sought to develop medical devices that could be implanted into patients for a variety of purposes, such as monitoring glucose levels in diabetic patients. However, existing materials present significant problems. For example, devices need to be made of a material that prevents the body's proteins from building up on sensors and preventing them from working properly. And any implanted device also needs to avoid provoking an inflammatory response from the body that would result in the body's walling off the device or rejecting it completely.

Now a new study finds that nanoporous ceramic membranes may be used to resolve these issues. Dr. Roger Narayan – an associate professor in the joint biomedical engineering department of NC State and the University of North Carolina at Chapel Hill – led the research and says the nanoporous membranes could be used to “create an interface between human tissues and medical devices that is free of protein buildup.”

The new research, published in a special issue of Biomedical Materials, is the first in-depth study of the biological and physical properties of the membranes. The study suggests that the human body will not reject the nanoporous ceramic membrane. Narayan adds that this could be a major advance for the development of kidney dialysis membranes and other medical devices whose development has been stalled by poor compatibility with human tissues. Narayan was also the lead researcher on the team that first developed these new materials.

Narayan's co-authors on the paper include NC State materials science engineering doctoral students Ravi Aggarwal and Wei Wei; NC State postdoctoral research associate Dr. Chunming Jin; Dr. Nancy Monteiro-Riviere, professor of investigative dermatology and toxicology at NC State's College of Veterinary Medicine and the Center for Chemical Toxicology Research and Pharmacokinetics; and Rene Crombez and Dr. Weidian Shen of Eastern Michigan University.

Media Contact

Matt Shipman EurekAlert!

More Information:

http://www.ncsu.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Results for control of pollutants in water

Brazilian scientists tested a simple and sustainable method for monitoring and degrading a mixture of polycyclic aromatic hydrocarbons, compounds present in fossil fuels and industrial waste. An article published in the journal Catalysis…

A tandem approach for better solar cells

Perovskite-based solar cells were first proved in 2009 to have excellent light-absorbing properties of methylammonium lead bromide and methylammonium lead iodide, collectively referred to as lead halide perovskites or, more…

The behavior of ant queens is shaped by their social environment

Specialization of ant queens as mere egg-layers is reversible / Queen behavioral specialization is initiated and maintained by the presence of workers. The queens in colonies of social insects, such…

Partners & Sponsors