Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NC State Develops More Precise Genetic ‘Off Switches’

29.10.2010
Researchers at North Carolina State University have found a way to “cage” genetic off switches in such a way that they can be activated when exposed to UV light. Their technology gives scientists a more precise way to control and study gene function in localized areas of developing organisms.

The off switches, called morpholino oligonucleotides, are like short snippets of DNA that, when introduced into cells, bind to target RNA molecules, effectively turning off specific genes. Morpholinos have been used as genetic switches in many animal models, including the zebrafish embryo.

However, morpholinos are distributed throughout dividing cells in a developing embryo, thereby turning off the specific gene everywhere. Moreover, they are active right after injection, silencing the targeted gene throughout development of the organism. Such uncontrolled genetic disruption makes studying tissue-specific and time-specific gene function difficult.

Dr. Alex Deiters, associate professor of chemistry, Dr. Jeffrey Yoder, associate professor of molecular biomedical sciences, and a team of NC State researchers developed a new methodology to turn off genes at a specific time and in a specific region of an organism.

Deiters’ team devised a way to synthesize morpholinos that would only bind with RNA molecules after a brief exposure to UV light, effectively “caging” the morpholino and providing a method for precisely controlling the genetic off switch. Yoder’s team then tested the new photo-caged morpholinos in a zebrafish model and confirmed that they performed as expected: the caged morpholinos did not disrupt gene function unless the embryos were briefly exposed to UV light.

The researchers’ results appear online in the Journal of the American Chemical Society.

The research was funded by grants from the National Institutes of Health. The Department of Molecular Biomedical Sciences is part of NC State’s College of Veterinary Medicine. The Department of Chemistry is part of NC State’s College of Physical and Mathematical Sciences. Deiters and Yoder are members of NC State’s Center for Comparative Medicine and Translational Research.

Tracey Peake | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>