Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nature study demonstrates that bacterial clotting depends on clustering

04.11.2008
Bacteria shown to cause blood clots

Bacteria can directly cause human blood and plasma to clot—a process that was previously thought to have been lost during the course of vertebrate evolution, according to new research at the University of Chicago, National Institute of Allergy and Infectious Diseases, and Institut Pasteur in Paris. Their findings will be published online Nov. 2 in Nature Chemical Biology.

The discovery will improve scientists' understanding of coagulation during bacterial infections and may lead to new clinical methods for treating serious medical conditions such as sepsis and anthrax.

It has long been known that blood often coagulates during sepsis or bacterial infections, but this has generally been regarded as a host's immune and inflammatory response. It also has been known that bacteria can activate factors that precede coagulation, but it had not previously been known that bacteria can pass the coagulation threshold and cause blood clots to form. Once they form, the clots can grow and propagate. Although this may help prevent the dissemination of the bacteria through the host, it often leads to serious vascular damage due to blocked and injured blood vessels.

The key to clot formation is the location of the bacteria, rather than the total number of bacteria or their level of concentration. In other words, for those bacteria that can activate coagulation factors, coagulation occurs only when a cluster of bacteria forms.

"Our research demonstrates that coagulation can be controlled by changing the spatial distribution, or clustering, of bacteria," said study co-author Christian Kastrup, Post-Doctoral Assistant at the Koch Institute for Integrative Cancer Research at the Massachusetts Institute of Technology. "Therefore, considering the location of bacterial cells, instead of just their presence or absence and their total numbers, could significantly change our understanding of coagulation."

Kastrup, who worked on this research as a graduate student in the Ismagilov Lab at the University of Chicago's Department of Chemistry, is the first author of the Nature paper. Rustem Ismagilov, Professor of Chemistry at the University of Chicago, is the corresponding author. Researchers at the National Institute of Allergy and Infectious Diseases, Institut Pasteur in Paris, and Ben-May Department for Cancer Research at the University of Chicago co-authored the paper.

Coagulation can occur if enough proteases that activate coagulation accumulate near the bacteria, rather than diffuse away. This research used Bacillus anthracis, the anthrax-causing pathogen (using a safe strain that does not infect humans). It found that in the case of human blood, coagulation required the secretion of zinc metalloprotease InhA1, which activated prothrombin and factor X directly—not via factor XII or tissue-factor pathways.

"We refer to this mechanism as 'quorum acting' to distinguish it from quorum sensing, in which bacteria coordinate certain actions based, in part, on their density," said Wei-Jen Tang, Professor at the Ben-May Department for Cancer Research.

This work opens up a new field of study, he added. "We will now explore the commonality of quorum acting, and how quorum acting can affect evolutionary dynamics."

The results of this research have broad implications, according to Ismagilov. "The work emphasizes the importance of bacteria's spatial distribution, rather than just its average concentration in the functioning of nonlinear biochemical networks," he said.

Greg Borzo | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>