Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nature’s Glowing Slime: Scientists Peek into Hidden Sea Worm’s Light

Clouds of bioluminescent mucus—emitted by a marine worm that lives in a cocoon-like habitat —are linked to a common vitamin

Scientists at Scripps Institution of Oceanography at UC San Diego and their colleagues are unraveling the mechanisms behind a little-known marine worm that produces a dazzling bioluminescent display in the form of puffs of blue light released into seawater.

A full-body fluorescence image of the parchment tube worm.

Found around the world in muddy environments, from shallow bays to deeper canyons, the light produced by the Chaetopterus marine worm—commonly known as the “parchment tube worm” due to the opaque, cocoon-like cylinders where it makes its home—is secreted as a slimy bioluminescent mucus.

The mucus, which the worms are able to secrete out of any part of their body, hasn’t been studied by scientists in more than 50 years. But two recent studies have helped reignite the quest to decode the inner workings of the worm’s bioluminescence.

In one study, published in the journal Physiological and Biochemical Zoology, Scripps Associate Research Scientist Dimitri Deheyn and his colleagues at Georgetown University describe details of Chaetopterus’s light production as never before. Through data derived from experiments conducted inside Scripps Oceanography’s Experimental Aquarium, the researchers characterized specific features of the worm’s light, tracing back its generation to a specific “photoprotein” tied to bioluminescence.

“The fact that the light is produced as a long glow without direct oxygen consumption is attractive for a range of future biotechnological applications,” added Deheyn, whose current work focuses on identifying the specific protein(s) involved in the light production.

The present study, however, focused on the general biochemistry and optical properties of the light production. “We have shown that the mucus produces a long-lasting glow of blue light, which is unique for this environment where bioluminescence is usually produced as short-lived flashes of light in the green spectrum, especially for benthic (seafloor) species,” said Deheyn, who added that green travels farthest and is therefore the easiest to detect in shallow coastal environments.

As for the light’s ecological function, the researchers speculate that the luminous mucus may serve as a trap to attract prey, a deterrent to ward off certain unwelcome guests into the worm’s living areas (the glowing mucus could stick to an intruder, making it more visible to its own predators), or possibly serve as a substance to build the worms’ flaky, tube-shaped homes.

The blue color makes it intriguing and difficult to reconcile with a visual function for shallow animals only.

“However, one can imagine that blue light would work better if the predator is a fish coming from greater depths, or for specific predators for which we still don’t know the visual sensitivity,” concluded Deheyn.

In a separate study, Deheyn and his colleagues at Connecticut College found that riboflavin, known as vitamin B2 and used widely as a dietary supplement, is a key source of the light production. The study appearing in Photochemistry and Photobiology focused on worms collected by Scripps Marine Collector and Technician Phil Zerofski in the La Jolla submarine canyon off the coast of San Diego, California. The research revealed riboflavin as the major fluorescent compound in all extracts of the worm’s luminescent material, including the glowing slime. Although more investigation is needed, the authors hypothesize that a derivative of riboflavin serves as the emitting force in the worm’s light-production process.

The authors note that the worms are not able to produce riboflavin on their own—only plants and microbes can—therefore the worms must acquire the vitamin through a food source, the same way humans do.

“We have shown that the bioluminescent light production involves riboflavin, which is key because it means that the worm is relying on an external source,” said Deheyn. “We suggest the light production depends on the worm’s diet, yet it could also involve a symbiosis with bacteria (possibly living in the tube) to provide the riboflavin.”

Further investigations are targeting intricacies of the chemical reactions behind the light production and methods to synthesize the light production in the laboratory.

The Air Force Office of Scientific Research’s Natural Materials, Systems, and Extremophiles Program and the Hans & Ella McCollum ’21 Vahlteich Endowment supported the research.

About Scripps Institution of Oceanography Scripps Institution of Oceanography at the University of California, San Diego, is one of the oldest, largest, and most important centers for global science research and education in the world. Now in its second century of discovery, the scientific scope of the institution has grown to include biological, physical, chemical, geological, geophysical, and atmospheric studies of the earth as a system. Hundreds of research programs covering a wide range of scientific areas are under way today on every continent and in every ocean. The institution has a staff of about 1,400 and annual expenditures of approximately $170 million from federal, state, and private sources. Scripps operates robotic networks and one of the largest U.S. academic fleets with four oceanographic research ships and one research platform for worldwide exploration. Birch Aquarium at Scripps serves as the interpretive center of the institution and showcases Scripps research and a diverse array of marine life through exhibits and programming for more than 425,000 visitors each year. Learn more at

Mario Aguilera | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>