Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nature’s Glowing Slime: Scientists Peek into Hidden Sea Worm’s Light

14.11.2013
Clouds of bioluminescent mucus—emitted by a marine worm that lives in a cocoon-like habitat —are linked to a common vitamin

Scientists at Scripps Institution of Oceanography at UC San Diego and their colleagues are unraveling the mechanisms behind a little-known marine worm that produces a dazzling bioluminescent display in the form of puffs of blue light released into seawater.


A full-body fluorescence image of the parchment tube worm.

Found around the world in muddy environments, from shallow bays to deeper canyons, the light produced by the Chaetopterus marine worm—commonly known as the “parchment tube worm” due to the opaque, cocoon-like cylinders where it makes its home—is secreted as a slimy bioluminescent mucus.

The mucus, which the worms are able to secrete out of any part of their body, hasn’t been studied by scientists in more than 50 years. But two recent studies have helped reignite the quest to decode the inner workings of the worm’s bioluminescence.

In one study, published in the journal Physiological and Biochemical Zoology, Scripps Associate Research Scientist Dimitri Deheyn and his colleagues at Georgetown University describe details of Chaetopterus’s light production as never before. Through data derived from experiments conducted inside Scripps Oceanography’s Experimental Aquarium, the researchers characterized specific features of the worm’s light, tracing back its generation to a specific “photoprotein” tied to bioluminescence.

“The fact that the light is produced as a long glow without direct oxygen consumption is attractive for a range of future biotechnological applications,” added Deheyn, whose current work focuses on identifying the specific protein(s) involved in the light production.

The present study, however, focused on the general biochemistry and optical properties of the light production. “We have shown that the mucus produces a long-lasting glow of blue light, which is unique for this environment where bioluminescence is usually produced as short-lived flashes of light in the green spectrum, especially for benthic (seafloor) species,” said Deheyn, who added that green travels farthest and is therefore the easiest to detect in shallow coastal environments.

As for the light’s ecological function, the researchers speculate that the luminous mucus may serve as a trap to attract prey, a deterrent to ward off certain unwelcome guests into the worm’s living areas (the glowing mucus could stick to an intruder, making it more visible to its own predators), or possibly serve as a substance to build the worms’ flaky, tube-shaped homes.

The blue color makes it intriguing and difficult to reconcile with a visual function for shallow animals only.

“However, one can imagine that blue light would work better if the predator is a fish coming from greater depths, or for specific predators for which we still don’t know the visual sensitivity,” concluded Deheyn.

In a separate study, Deheyn and his colleagues at Connecticut College found that riboflavin, known as vitamin B2 and used widely as a dietary supplement, is a key source of the light production. The study appearing in Photochemistry and Photobiology focused on worms collected by Scripps Marine Collector and Technician Phil Zerofski in the La Jolla submarine canyon off the coast of San Diego, California. The research revealed riboflavin as the major fluorescent compound in all extracts of the worm’s luminescent material, including the glowing slime. Although more investigation is needed, the authors hypothesize that a derivative of riboflavin serves as the emitting force in the worm’s light-production process.

The authors note that the worms are not able to produce riboflavin on their own—only plants and microbes can—therefore the worms must acquire the vitamin through a food source, the same way humans do.

“We have shown that the bioluminescent light production involves riboflavin, which is key because it means that the worm is relying on an external source,” said Deheyn. “We suggest the light production depends on the worm’s diet, yet it could also involve a symbiosis with bacteria (possibly living in the tube) to provide the riboflavin.”

Further investigations are targeting intricacies of the chemical reactions behind the light production and methods to synthesize the light production in the laboratory.

The Air Force Office of Scientific Research’s Natural Materials, Systems, and Extremophiles Program and the Hans & Ella McCollum ’21 Vahlteich Endowment supported the research.

About Scripps Institution of Oceanography Scripps Institution of Oceanography at the University of California, San Diego, is one of the oldest, largest, and most important centers for global science research and education in the world. Now in its second century of discovery, the scientific scope of the institution has grown to include biological, physical, chemical, geological, geophysical, and atmospheric studies of the earth as a system. Hundreds of research programs covering a wide range of scientific areas are under way today on every continent and in every ocean. The institution has a staff of about 1,400 and annual expenditures of approximately $170 million from federal, state, and private sources. Scripps operates robotic networks and one of the largest U.S. academic fleets with four oceanographic research ships and one research platform for worldwide exploration. Birch Aquarium at Scripps serves as the interpretive center of the institution and showcases Scripps research and a diverse array of marine life through exhibits and programming for more than 425,000 visitors each year. Learn more at scripps.ucsd.edu.

Mario Aguilera | EurekAlert!
Further information:
http://www.scripps.ucsd.edu
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>