Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nature’s own chemical plant

11.11.2008
Crude oil is getting more and more expensive, a fact clearly felt by the chemical industry. An alternative source of carbon is biomass, for instance colza and whey, which can likewise be used to produce chemical products.

Petroleum is the feedstock for many products in the chemical industry. However, this fossil fuel is becoming increasingly scarce and expensive. Renewable raw materials are an alternative. But can the likes of bioethanol be obtained from sources other than foods such as sugar cane or cereals? The answer is yes.

Thanks to white industrial biotechnology, chemical substances can also be derived from waste products generated by the food industry, leftover biomass from agriculture and forestry, and residual materials. Researchers of the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB in Stuttgart are demonstrating how this biotechnical recycling works, using colza, whey and crab shells as examples.

When producing biodiesel from colza oil, raw glycerol is accrued as a byproduct. Scientists at the IGB have now developed a method of converting this raw glycerol into 1,3-propandiol – a chemical base for producing polyesters or wood paint. Until now, 1,3-propandiol has always been chemically synthesized, but it can also be derived from glycerol by certain micro-organisms. Clostridium diolis bacteria, for example, can produce a comparatively high yield of chemical feedstock. However, these bacteria cannot convert raw glycerol. This is because raw glycerol contains fatty acids left over from the colza oil, and these have to be separated out.

“Furthermore, high concentrations of both the glycerol substrate and the 1,3-propandiol product inhibit the growth of the bacteria,” says Dr. Wolfgang Krischke of the IGB, pointing out another challenge in developing this biotechnological process. “We have managed to solve this problem to a large extent by keeping the bioreactor in continuous operation, because once the glycerol has been almost fully converted, it loses its inhibiting effect. In this way, we have achieved a stable process with high product concentrations.” The fatty acids can be converted by yeasts to long chain dicarboxylic acids providing novel building blocks for polymer industries.

One of the byproducts obtained from the manufacture of dairy products is acid whey, which until now has always been disposed of at considerable cost. However, the milk sugar (lactose) contained in the whey can be converted into lactic acid (lactate) with the help of lactic acid bacteria. Lactate not only serves as a preservative agent and acidifier in food production, but can also be used as a feedstock in the chemical industry – for example in the production of polylactides, which are biodegradable polymers. Such polylactic acids are already being used to make disposable crockery and screws for surgical operations.

| alfa
Further information:
http://www.igb.fraunhofer.de
http://www.fraunhofer.de/EN/press/pi/2008/11/ResearchNews112008Topic7.jsp

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>