Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nature Nanotechnology paper shows enzyme-controlled movement of DNA polymer through a nanopore

27.09.2010
Research demonstrates progress towards DNA strand sequencing

Research published this week in Nature Nanotechnology shows a new method of enzyme-controlled movement of a single strand of DNA through a protein nanopore. The paper, by researchers at the University of California Santa Cruz (UCSC), represents a key step towards nanopore sequencing of DNA strands.

The publication describes the observation of single stranded DNA (ssDNA) as it translocates through a protein nanopore, alpha hemolysin (AHL). Movement of the ssDNA was controlled by polymerase-facilitated replication of individual DNA molecules. This movement could be initiated under electronic control. Polymerase activity was shown to be blocked in solution when the ssDNA was not at the nanopore opening, however capture of the strand by the pore removes a blocking strand of nucleotides and allows the polymerase to function on the trapped strand.

UCSC researchers are collaborating with Oxford Nanopore Technologies Ltd in the development of a new generation of electronic, single-molecule DNA sequencing technology. In the 'strand sequencing' method, current through a nanopore is measured as a DNA polymer passes through that pore. Changes in this current are used to identify the DNA bases on the DNA molecule, in sequence. This paper addresses a key challenge for DNA strand sequencing: fine control of the translocation of the DNA strand through the nanopore, at a rate that is consistent and slow enough to enable accurate identification of individual DNA bases. The Nature Nanotechnology work shows for the first time that the motion of a strand can be controlled using electronic feedback and that an enzyme can move a strand against a field while located on top of the nanopore.

"The techniques described in this paper are an advance towards electronic, single molecule DNA sequencing of DNA strands" said investigator Professor Mark Akeson of the University of California, Santa Cruz. "Electronic control of DNA translocation through a protein nanopore is a scientific goal that we have strived towards for years and these methods are now forming the basis for further work in our laboratories. We are excited by our collaboration with Oxford Nanopore, whose parallel nanopore sensing strategy is impressive."

Notes to Editors

Reference: Replication of individual DNA molecules under electronic control using a protein nanopore. Felix Olasagasti, Kate R. Lieberman, Seico Benner, Gerald M. Cherf, Joseph M. Dahl, David W. Deamer and Mark Akeson Nature Nanotechnology September 2010.

DOI: 10.1038/NNANO.2010.177, (subscription needed) http://www.nature.com/nnano/journal/vaop/ncurrent/full/nnano.2010.177.html

Work conducted in this paper

In this Nature Nanotechnology paper, DNA replication was catalyzed by bacteriophage T7 DNA polymerase (T7DNAP) and by the Klenow fragment of DNA polymerase I (KF) in order to drive ssDNA through the nanopore. The T7DNAP enzyme advanced on a DNA template against an 80 mV load applied across the nanopore, and single nucleotide additions were measured on the millisecond time scale for hundreds of individual DNA molecules in series. When using the KF enzyme, nucleotide additions were not observed when the enzyme was directly on the pore, but using electronic feedback, KF enzymes were allowed to act on the strand while in the solution above the pore, resulting in a controlled movement of the strand.

Base identification during strand sequencing

In addition to achieving fine control of DNA translocation through a nanopore, a key challenge for strand sequencing is accurate identification of individual nucleotides on ssDNA. When passing through AHL,10-15 bases on a ssDNA polymer will span the pore's central channel. Strategies are in development for distinguishing single bases, for example researchers at the University of Oxford have previously published a method to correctly identify individual nucleotides on ssDNA immobilised within an AHL nanopore. Further work continues at Oxford Nanopore and in the laboratories of the Company's collaborators.

Oxford Nanopore Technologies Ltd

Oxford Nanopore Technologies Ltd is developing a revolutionary technology for direct, electrical detection and analysis of single molecules. The platform is designed to offer substantial benefits in a variety of applications. The Company's lead application is DNA sequencing, but the platform is also adaptable for protein analysis for diagnostics and drug development and identification of a range of other molecules for security & defence and environmental monitoring. The technology is modular and highly scalable, driven by electronics rather than optics.

The Company's first generations of DNA sequencing technology, Exonuclease sequencing and Strand sequencing, combine a protein nanopore with a processive enzyme, multiplexed on a silicon chip. This elegant and scalable system has unique potential to transform the speed and cost of DNA sequencing. Oxford Nanopore also has collaborative projects in the development of solid state nanopores for further improvements in speed and cost. For further information please visit www.nanoporetech.com.

Zoe McDougall | EurekAlert!
Further information:
http://www.nanoporetech.com

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>