Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nature Nanotechnology paper shows enzyme-controlled movement of DNA polymer through a nanopore

27.09.2010
Research demonstrates progress towards DNA strand sequencing

Research published this week in Nature Nanotechnology shows a new method of enzyme-controlled movement of a single strand of DNA through a protein nanopore. The paper, by researchers at the University of California Santa Cruz (UCSC), represents a key step towards nanopore sequencing of DNA strands.

The publication describes the observation of single stranded DNA (ssDNA) as it translocates through a protein nanopore, alpha hemolysin (AHL). Movement of the ssDNA was controlled by polymerase-facilitated replication of individual DNA molecules. This movement could be initiated under electronic control. Polymerase activity was shown to be blocked in solution when the ssDNA was not at the nanopore opening, however capture of the strand by the pore removes a blocking strand of nucleotides and allows the polymerase to function on the trapped strand.

UCSC researchers are collaborating with Oxford Nanopore Technologies Ltd in the development of a new generation of electronic, single-molecule DNA sequencing technology. In the 'strand sequencing' method, current through a nanopore is measured as a DNA polymer passes through that pore. Changes in this current are used to identify the DNA bases on the DNA molecule, in sequence. This paper addresses a key challenge for DNA strand sequencing: fine control of the translocation of the DNA strand through the nanopore, at a rate that is consistent and slow enough to enable accurate identification of individual DNA bases. The Nature Nanotechnology work shows for the first time that the motion of a strand can be controlled using electronic feedback and that an enzyme can move a strand against a field while located on top of the nanopore.

"The techniques described in this paper are an advance towards electronic, single molecule DNA sequencing of DNA strands" said investigator Professor Mark Akeson of the University of California, Santa Cruz. "Electronic control of DNA translocation through a protein nanopore is a scientific goal that we have strived towards for years and these methods are now forming the basis for further work in our laboratories. We are excited by our collaboration with Oxford Nanopore, whose parallel nanopore sensing strategy is impressive."

Notes to Editors

Reference: Replication of individual DNA molecules under electronic control using a protein nanopore. Felix Olasagasti, Kate R. Lieberman, Seico Benner, Gerald M. Cherf, Joseph M. Dahl, David W. Deamer and Mark Akeson Nature Nanotechnology September 2010.

DOI: 10.1038/NNANO.2010.177, (subscription needed) http://www.nature.com/nnano/journal/vaop/ncurrent/full/nnano.2010.177.html

Work conducted in this paper

In this Nature Nanotechnology paper, DNA replication was catalyzed by bacteriophage T7 DNA polymerase (T7DNAP) and by the Klenow fragment of DNA polymerase I (KF) in order to drive ssDNA through the nanopore. The T7DNAP enzyme advanced on a DNA template against an 80 mV load applied across the nanopore, and single nucleotide additions were measured on the millisecond time scale for hundreds of individual DNA molecules in series. When using the KF enzyme, nucleotide additions were not observed when the enzyme was directly on the pore, but using electronic feedback, KF enzymes were allowed to act on the strand while in the solution above the pore, resulting in a controlled movement of the strand.

Base identification during strand sequencing

In addition to achieving fine control of DNA translocation through a nanopore, a key challenge for strand sequencing is accurate identification of individual nucleotides on ssDNA. When passing through AHL,10-15 bases on a ssDNA polymer will span the pore's central channel. Strategies are in development for distinguishing single bases, for example researchers at the University of Oxford have previously published a method to correctly identify individual nucleotides on ssDNA immobilised within an AHL nanopore. Further work continues at Oxford Nanopore and in the laboratories of the Company's collaborators.

Oxford Nanopore Technologies Ltd

Oxford Nanopore Technologies Ltd is developing a revolutionary technology for direct, electrical detection and analysis of single molecules. The platform is designed to offer substantial benefits in a variety of applications. The Company's lead application is DNA sequencing, but the platform is also adaptable for protein analysis for diagnostics and drug development and identification of a range of other molecules for security & defence and environmental monitoring. The technology is modular and highly scalable, driven by electronics rather than optics.

The Company's first generations of DNA sequencing technology, Exonuclease sequencing and Strand sequencing, combine a protein nanopore with a processive enzyme, multiplexed on a silicon chip. This elegant and scalable system has unique potential to transform the speed and cost of DNA sequencing. Oxford Nanopore also has collaborative projects in the development of solid state nanopores for further improvements in speed and cost. For further information please visit www.nanoporetech.com.

Zoe McDougall | EurekAlert!
Further information:
http://www.nanoporetech.com

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>