Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Naturally-Occurring Substance Proves Effective Against Deadly Skin Cancer in Test Tube and Mice Studies

12.04.2013
For the first time, scientists have demonstrated the mechanism of action of gossypin, a naturally-occurring substance found in fruits and vegetables, as a treatment for melanoma, which causes the majority of deaths from skin cancer.

“We identified gossypin as a novel agent with dual inhibitory activity towards two common mutations that are the ideal targets for melanoma treatment,” said Texas Biomed’s Hareesh Nair, Ph.D.

At the moment, there is no single therapeutic agent or combination regimen available to treat all melanomas, of which about 76,000 new cases are diagnosed annually, according to the American Cancer Society.

“Our results indicate that gossypin may have great therapeutic potential as a dual inhibitor of mutations called BRAFV600E kinase and CDK4, which occur in the vast majority of melanoma patients. They open a new avenue for the generation of a novel class of compounds for the treatment of melanoma,” Nair added.

His report, appearing in the March 29, 2013 issue of the journal Molecular Cancer Therapeutics, was funded by the Texas Biomedical Forum and the Robert J. Kleberg, Jr. and Helen C. Kleberg Foundation.

Nair and his colleagues found that gossypin inhibited human melanoma cell proliferation, in vitro, in melanoma cell lines that harbor the two mutations. Gossypin stunted activities of the mutated genes, possibly through direct binding with them. It also inhibited the growth of various human melanoma cells. In addition, gossypin treatment for 10 days of human melanoma cell tumors with the mutations transplanted into mice reduced tumor volume and increased survival rate.

Further studies are planned by Nair’s team to understand how the body absorbs gossypin and how it is metabolized. This idea has been discussed with the Cancer Therapy & Research Center at the UT Health Science Center San Antonio’s Deva Mahalingam, M.D, Ph.D., who is interested in testing gossypin in melanoma patients.

Co-authors on the paper include John L. VandeBerg, Ph.D., and Shylesh Bhaskaran, Ph.D., of Texas Biomed; Kalarikkal V. Dileep, M.Sc., and Chittalakkottu Sadasivan, Ph.D., of Kannur University, in Palayad, India; Deepa S. Sathyaseelan, Ph.D., of the Barshop Institute for Longevity and Aging Studies at the UT Health Science Center San Antonio; Mitch Klausner, Ph.D., of the MatTek Corporation; and Naveen K. Krishnegowda, M.D., and Rajeshwar R. Tekmal, Ph.D., of the Department of Obstetrics and Gynecology at the UT Health Science Center San Antonio.

Texas Biomed, formerly the Southwest Foundation for Biomedical Research, is one of the world's leading independent biomedical research institutions dedicated to advancing health worldwide through innovative biomedical research. Located on a 200-acre campus on the northwest side of San Antonio, Texas Biomed partners with hundreds of researchers and institutions around the world, targeting advances in the fight against AIDS, hepatitis, malaria, parasitic infections and a host of other infectious diseases, as well as cardiovascular disease, diabetes, obesity, cancer, psychiatric disorders, and problems of pregnancy. For more information on Texas Biomed, go to www.TxBiomed.org, or call Joe Carey, Texas Biomed’s Vice President for Public Affairs, at 210-258-9437

Joseph Carey | Newswise
Further information:
http://www.txbiomed.org

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>