Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Naturally-Occurring Substance Proves Effective Against Deadly Skin Cancer in Test Tube and Mice Studies

12.04.2013
For the first time, scientists have demonstrated the mechanism of action of gossypin, a naturally-occurring substance found in fruits and vegetables, as a treatment for melanoma, which causes the majority of deaths from skin cancer.

“We identified gossypin as a novel agent with dual inhibitory activity towards two common mutations that are the ideal targets for melanoma treatment,” said Texas Biomed’s Hareesh Nair, Ph.D.

At the moment, there is no single therapeutic agent or combination regimen available to treat all melanomas, of which about 76,000 new cases are diagnosed annually, according to the American Cancer Society.

“Our results indicate that gossypin may have great therapeutic potential as a dual inhibitor of mutations called BRAFV600E kinase and CDK4, which occur in the vast majority of melanoma patients. They open a new avenue for the generation of a novel class of compounds for the treatment of melanoma,” Nair added.

His report, appearing in the March 29, 2013 issue of the journal Molecular Cancer Therapeutics, was funded by the Texas Biomedical Forum and the Robert J. Kleberg, Jr. and Helen C. Kleberg Foundation.

Nair and his colleagues found that gossypin inhibited human melanoma cell proliferation, in vitro, in melanoma cell lines that harbor the two mutations. Gossypin stunted activities of the mutated genes, possibly through direct binding with them. It also inhibited the growth of various human melanoma cells. In addition, gossypin treatment for 10 days of human melanoma cell tumors with the mutations transplanted into mice reduced tumor volume and increased survival rate.

Further studies are planned by Nair’s team to understand how the body absorbs gossypin and how it is metabolized. This idea has been discussed with the Cancer Therapy & Research Center at the UT Health Science Center San Antonio’s Deva Mahalingam, M.D, Ph.D., who is interested in testing gossypin in melanoma patients.

Co-authors on the paper include John L. VandeBerg, Ph.D., and Shylesh Bhaskaran, Ph.D., of Texas Biomed; Kalarikkal V. Dileep, M.Sc., and Chittalakkottu Sadasivan, Ph.D., of Kannur University, in Palayad, India; Deepa S. Sathyaseelan, Ph.D., of the Barshop Institute for Longevity and Aging Studies at the UT Health Science Center San Antonio; Mitch Klausner, Ph.D., of the MatTek Corporation; and Naveen K. Krishnegowda, M.D., and Rajeshwar R. Tekmal, Ph.D., of the Department of Obstetrics and Gynecology at the UT Health Science Center San Antonio.

Texas Biomed, formerly the Southwest Foundation for Biomedical Research, is one of the world's leading independent biomedical research institutions dedicated to advancing health worldwide through innovative biomedical research. Located on a 200-acre campus on the northwest side of San Antonio, Texas Biomed partners with hundreds of researchers and institutions around the world, targeting advances in the fight against AIDS, hepatitis, malaria, parasitic infections and a host of other infectious diseases, as well as cardiovascular disease, diabetes, obesity, cancer, psychiatric disorders, and problems of pregnancy. For more information on Texas Biomed, go to www.TxBiomed.org, or call Joe Carey, Texas Biomed’s Vice President for Public Affairs, at 210-258-9437

Joseph Carey | Newswise
Further information:
http://www.txbiomed.org

More articles from Life Sciences:

nachricht Novel 'repair system' discovered in algae may yield new tools for biotechnology
29.07.2016 | Boyce Thompson Institute

nachricht Molecular troublemakers instead of antibiotics?
29.07.2016 | Christian-Albrechts-Universität zu Kiel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

 
Latest News

Vortex laser offers hope for Moore's Law

29.07.2016 | Power and Electrical Engineering

Novel 'repair system' discovered in algae may yield new tools for biotechnology

29.07.2016 | Life Sciences

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>