Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Natural suppressors of a treatment-induced disease

13.07.2009
A naturally occurring population of dendritic cells reduces the incidence and severity of graft-versus-host-disease in mice

Researchers in Japan have shown that mouse dendritic cells (DCs), which can promote or inhibit inflammation depending on the proteins displayed on their surface, include a subpopulation that exerts beneficial effects during a treatment for leukemia and other malignancies.

The treatment—known as allogeneic hematopoietic stem cell transplantation (alloHSCT)—can, in some situations, result in graft-versus-host-disease (GVHD). Acute and chronic GVHD occur when donor immune cells called T lymphocytes recognize and become activated by proteins present on recipient but not donor tissues. The resulting T lymphocyte-driven immune response can result in severe damage to the recipient skin, gastrointestinal tract and liver.

Previous work by these researchers described the generation of regulatory DCs from mouse bone marrow (BM-DCregs) that, when injected after alloHSCT, reduce the severity and incidence of acute and chronic GVHD. The team, led by Katsuaki Sato at the RIKEN Research Center for Allergy and Immunology in Yokohama, has now shown that naturally occurring counterparts of BM-DCregs exist and influence the outcome of alloHSCT in mice1.

The researchers started by searching for genes associated with immunosuppressive DC function. A comparison of the genes expressed in BM-DCregs and non-regulatory DCs revealed that the gene encoding the surface protein CD200R3 is expressed exclusively in BM-DCregs. They found that blockade of CD200R3 impaired the ability of BM-DCregs to suppress proliferation of T lymphocytes, whereas forced expression of CD200R3 in non-regulatory DCs reduced their ability to promote T lymphocyte cell division. This indicates that CD200R3 contributes to the immunosuppressive function of BM-DCregs.

Reasoning that naturally occurring regulatory DCs might also express CD200R3, the researchers screened blood and spleen cells for CD200R3 expression. They identified a small population of CD200R3-expressing cells that, like BM-DCregs, produced immunosuppressive cytokines, which are regulators of the immune system, and inhibit T cell proliferation. These CD200R3+ DCs exhibited a different morphology than non-regulatory DCs (Fig. 1).

When injected after alloHSCT, Sato and colleagues found that these CD200R3+ DCs—like BM-DCregs—suppressed the onset and severity of GVHD. Recipients of BM-DCregs contained lower amounts of serum proinflammatory proteins, and higher numbers of immunosuppressive regulatory T lymphocytes. Further highlighting the biological importance of BM-DCregs, pre-treatment with a CD200R3-blocking antibody prior to alloHSCT exacerbated GVHD.

“The functional identification of naturally occurring human DCregs, as well as their counterparts generated the laboratory, may provide an advantageous means of intervening to prevent chronic GVHD after alloHSCT” says Sato.

Reference

1. Sato, K., Eizumi, K., Fukaya, T., Fujita, S., Sato, Y., Takagi, H., Yamamoto, M., Yamashita, N., Hijikata, A., Kitamura, H., Ohara, O., Yamasaki, S., Saito, T. & Sato, K. Naturally occurring regulatory dendritic cells regulate murine cutaneous chronic graft-versus-host disease. Blood 113, 4780–4789 (2009).

The corresponding author for this highlight is based at the RIKEN Laboratory for Dendritic Cell Immunobiology

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/742/

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>