Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Natural Plant Compound Prevents Alzheimer's Disease in Mice

A daily dose of the antioxidant fisetin keeps mice----even those with genetic mutations linked to Alzheimer's----from experiencing memory and learning deficits as they age.

A chemical that's found in fruits and vegetables from strawberries to cucumbers appears to stop memory loss that accompanies Alzheimer's disease in mice, scientists at the Salk Institute for Biological Studies have discovered.

In experiments on mice that normally develop Alzheimer's symptoms less than a year after birth, a daily dose of the compound----a flavonol called fisetin----prevented the progressive memory and learning impairments.

The drug, however, did not alter the formation of amyloid plaques in the brain, accumulations of proteins which are commonly blamed for Alzheimer's disease. The new finding suggests a way to treat Alzheimer's symptoms independently of targeting amyloid plaques.

"We had already shown that in normal animals, fisetin can improve memory," says Pamela Maher, a senior staff scientist in Salk's Cellular Neurobiology Laboratory who led the new study. "What we showed here is that it also can have an effect on animals prone to Alzheimer's."

More than a decade ago, Maher discovered that fisetin helps protect neurons in the brain from the effects of aging. She and her colleagues have since----in both isolated cell cultures and mouse studies----probed how the compound has both antioxidant and anti-inflammatory effects on cells in the brain. Most recently, they found that fisetin turns on a cellular pathway known to be involved in memory.

"What we realized is that fisetin has a number of properties that we thought might be beneficial when it comes to Alzheimer's," says Maher.

So Maher----who works with Dave Schubert, the head of the Cellular Neurobiology Lab----turned to a strain of mice that have mutations in two genes linked to Alzheimer's disease. The researchers took a subset of these mice and, when they were only three months old, began adding fisetin to their food. As the mice aged, the researchers tested their memory and learning skills with water mazes. By nine months of age, mice that hadn't received fisetin began performing more poorly in the mazes. Mice that had gotten a daily dose of the compound, however, performed as well as normal mice, at both nine months and a year old.

"Even as the disease would have been progressing, the fisetin was able to continue preventing symptoms," Maher says.

In collaboration with scientists at the University of California, San Diego, Maher's team next tested the levels of different molecules in the brains of mice that had received doses of fisetin and those that hadn't. In mice with Alzheimer's symptoms, they found, pathways involved in cellular inflammation were turned on. In the animals that had taken fisetin, those pathways were dampened and anti-inflammatory molecules were present instead. One protein in particular----known as p35----was blocked from being cleaved into a shorter version when fisetin was taken. The shortened version of p35 is known to turn on and off many other molecular pathways. The results were published December 17, 2013, in the journal Aging Cell.

Studies on isolated tissue had hinted that fisetin might also decrease the number of amyloid plaques in Alzheimer's affected brains. However, that observation didn't hold up in the mice studies. "Fisetin didn't affect the plaques," says Maher. "It seems to act on other pathways that haven't been seriously investigated in the past as therapeutic targets."

Next, Maher's team hopes to understand more of the molecular details on how fisetin affects memory, including whether there are targets other than p35.

"It may be that compounds like this that have more than one target are most effective at treating Alzheimer's disease," says Maher, "because it's a complex disease where there are a lot of things going wrong."

They also aim to develop new studies to look at how the timing of fisetin doses affect its influence on Alzheimer's.

"The model that we used here was a preventive model," explains Maher. "We started the mice on the drugs before they had any memory loss. But obviously human patients don't go to the doctor until they are already having memory problems." So the next step in moving the discovery toward the clinic, she says, is to test whether fisetin can reverse declines in memory once they have already appeared.

Other researchers on the paper were Antonio Currais, Marguerite Prior, Richard Dargusch, Jennifer Ehren, and David Schubert of the Salk Institute and Aaron Armando and Oswald Quehenberger of the University of California at San Diego.

The work was supported by grants from the Alzheimer's Association, Paul Slavik, the National Institutes of Health, the Alzheimer's Drug Discovery Foundation, and the George E. Hewitt Foundation.

About the Salk Institute for Biological Studies:
The Salk Institute for Biological Studies is one of the world's preeminent basic research institutions, where internationally renowned faculty probe fundamental life science questions in a unique, collaborative, and creative environment. Focused both on discovery and on mentoring future generations of researchers, Salk scientists make groundbreaking contributions to our understanding of cancer, aging, Alzheimer's, diabetes and infectious diseases by studying neuroscience, genetics, cell and plant biology, and related disciplines.

Faculty achievements have been recognized with numerous honors, including Nobel Prizes and memberships in the National Academy of Sciences. Founded in 1960 by polio vaccine pioneer Jonas Salk, M.D., the Institute is an independent nonprofit organization and architectural landmark.

Chris Emery | Newswise
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>