Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Natural method for clearing cellular debris provides new targets for lupus treatment

24.02.2012
Cells that die naturally generate a lot of internal debris that can trigger the immune system to attack the body, leading to diseases such as lupus.
Now Georgia Health Sciences University researchers report that an enzyme known to help keep a woman's immune system from attacking a fetus also helps block development of these autoimmune diseases that target healthy tissues, such as DNA or joints.

The findings point toward new treatment strategies for autoimmune diseases, which are on the rise in light of a germ-conscious society that regularly destroys many of the previously pervasive microbes that made the immune system more tolerant.

"The basic premise of lupus is you have lost normal tolerance to yourself, your own proteins and DNA," said Dr. Tracy L. McGaha, GHSU immunologist and corresponding author of the study published in Proceedings of the National Academy of Sciences.

They found that IDO, or indoleomine 2,3-dioxegenase, helps promote tolerance to debris generated by natural cell death and that when IDO is removed from the mix, the debris spurs an immune response that can trigger autoimmune disease. In mice genetically programmed to develop lupus, blocking IDO resulted in earlier, more aggressive disease.

"This connects IDO and macrophages. It's a newly described role for IDO in regulation of tolerance toward self," McGaha said. Consequently, increasing IDO production or its downstream effects might be a way to regain lost tolerance, he said.

They studied activity in the spleen, a hard-working immune organ, that constantly filters blood. In a perfectly orchestrated defense, the entrance to the spleen is surrounded by immune cells that scour blood for viruses, bacteria, even fat and cholesterol floating by.

A nearby subset of macrophages, which are essentially scavengers, then capture and consume the undesirables, McGaha said. Interestingly, a lot of what macrophages consume is dead immune cells.

Macrophages also appear to help keep the peace by preventing the immune system from joining the fray. McGaha earlier found that if he destroyed macrophages, then fed the spleen dead cells, there was inflammation instead of calm. "That tells us there is something inherent in this subset of macrophages that is important for the suppressive process," McGaha said referencing the paper published in 2011 in the journal Blood.

The new paper shows IDO is part of that "something." Efficient elimination of cell debris while keeping nearby immune cells quiet is important because some debris is known to grab the attention of the immune system, McGaha said. He noted that it's normal – and healthy – for damaged cells to become targets.

"We are really interested in this process of normal cell debris removal because in lupus, it's thought to be one of the main drivers of inflammation," he said.

The immune system has points of expansion and regulation where it decides whether or not to act. Knowing key points, such as IDO's regulatory role, provides treatment targets that can interrupt a destructive cascade of immune activity, McGaha said. Previous studies have shown evidence of self-attack is present many years before disease symptoms appear, he said.

Environmental assaults, such as a bad sunburn, can be the initial trigger of the abnormal immune response in diseases like lupus. In healthy individuals, the immune system rises to the occasion of an infection then goes back to baseline. In autoimmune disease, patients tend not to return to normal levels.

GHSU's Drs. Andrew Mellor and David Munn reported in 1998 in the journal Science that the fetus expresses IDO to help avoid rejection by the mother's immune system. Subsequent studies have shown tumors also use it and that it could help transplanted organs escape rejection. They suggested that McGaha look at IDO as a regulatory mechanism used by macrophages.

Toni Baker | EurekAlert!
Further information:
http://www.georgiahealth.edu

Further reports about: DNA Health Sciences IDO autoimmune disease immune cell immune response immune system

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>