Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Natural Killer’ immune cells reveal factors for reproductive success

04.11.2008
Immune cells known as natural killer (NK) cells are linked with pregnancy problems including pre-eclampsia and recurrent miscarriage.

Collaborative research between scientists at the Babraham Institute and Centre for Trophoblast Research in Cambridge is illuminating the role that pregnancy-related NK cells play in moderating the biochemical interactions at the boundary between maternal tissues and the developing foetus.

Their findings, reported in November’s Journal of Immunology, reveal that uterine NK cells are ‘armed’ with specific receptors, enabling interaction with other molecules to ensure that the placenta develops normally and the pregnancy is successful.

Natural Killer (NK) cells, a type of white blood cell, defend us from tumours, viruses and other potential dangers. They sense their environment through a repertoire of surface proteins (receptors), which detect other immune molecules, those belonging to the Major Histocompatability Complex (MHC). This allows NK cells to distinguish ‘friend from foe’ and attack cells that have either lost self-MHC molecules or express a different set of MHC molecules.

A specialised set of NK cells accumulates in the uterus during each menstrual cycle and, if a fertilised embryo implants, their numbers rapidly swell at the maternal-foetal boundary. The role of these cells in pregnancy is enigmatic. Instead of the killing function normally associated with NK cells, in the uterus NK cells work in a different way; they are thought to make factors known as cytokines, which help to modify the maternal arteries supplying the developing foetus with the necessary blood, nutrients and oxygen. These dramatic tissue changes must be orchestrated in the context of the genetic diversity between the maternal immune cells and the paternal genes expressed on the developing placenta. Hostile interactions between maternal uterine NK cells and paternal MHC molecules are associated with an increased likelihood of abnormal pregnancies and recurrent miscarriage. However, the receptors enabling uterine NK cells to interact with MHC are only recently being uncovered. It is also unclear how maternal immune cells recognise paternal molecules in the unique micro-environment of the developing placenta, preventing an attack being mounted.

The Cambridge collaborators have identified the repertoire of activating and inhibitory receptors present on uterine NK cells and demonstrated that they are different from blood NK cells in terms of their adhesion, activation and MHC recognition capabilities.

“Not enough is known about these unique cells and their important role in pregnancy,” said Hakim Yadi, lead author and PhD student at the Babraham Institute. “This unprecedented and in-depth analysis of uterine killer cells is the necessary groundwork upon which we can build new knowledge. This will aid us in determining the factors that regulate reproductive success”.

The team’s analysis also revealed that uterine NK cells can be separated in two previously unappreciated subsets, opening up new questions related to their origin and functions, insights that will further understanding of the unique role of immune cells at the maternal-foetal interface.

This research was supported by the BBSRC, through a Babraham Institute Synergy Award to Drs. Francesco Colucci and Myriam Hemberger, an MRC Project Grant to Francesco Colucci and by the recently established Centre for Trophoblast Research at the University of Cambridge.

Claire Cockcroft | alfa
Further information:
http://www.babraham.ac.uk
http://www.trophoblast.cam.ac.uk/

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>