Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Natural killer cells – the body’s own patrol against viruses and tumours

14.01.2013
Setting the stage for personalised medicine, researchers decode major immune cell's protein content
Scientists at the Helmholtz Centre for Infection Research (HZI) have analysed for the first time all the proteins inside natural killer (NK) cells of healthy individuals. The newly discovered “protein repertoire” shows that these immune cells cannot only defend us against acute viral infections but they can also store information about earlier infections. The researchers have identified new proteins that help to determine NK cell condition. These findings may improve the basis for personalized therapies.

To effectively fight off different kinds of pathogens, the human immune system has become highly specialized. Defending us against viruses and tumour cells is the task of NK cells. Armed with small, enzyme-containing spheres capable of causing a damaged cell to burst, these sentinels with their vicious sounding name patrol our bodies. When prompted to do so, they fire their ammunition at other cells across a specialized contact surface. As we grow older, our NK cells also age and mature. Scientists at HZI, Braunschweig City Hospital, and Ostfalia University of Applied Sciences recently characterized what happens inside these cells during this process. They published their findings in the scientific journal Molecular & Cellular Proteomics.

“We have isolated NK cells at varying stages of maturation from the blood of healthy individuals. Using accurate mass spectrometry, we managed to analyse which proteins they produce,” explains HZI scientist Maxi Scheiter. Since proteins have a key role in many of the cell's functions - as enzymes, signalling molecules, or building blocks, to name only a few - the researchers are now able to draw conclusions as to their jobs within the cell. “We discovered more than 3,400 proteins inside cells at different stages of maturation. They suggest that NK cell development in humans is highly similar to what was known before from experiments in mice,” says Prof. Lothar Jänsch, head of HZI’s Cellular Proteome Research unit. The massive amounts of data that have come out of this research were analysed with the help of biostatistical algorithms by Ostfalia University’s Prof. Frank Klawonn.

Among the identified proteins were some whose role in natural killer cells was previously unknown. “We were very interested in identifying these proteins' functions inside the immune cells,” explains Scheiter. “We therefore labelled two of the most promising candidates using a special dye and then examined them under the fluorescence microscope to localize them within the cell.” The view through the microscope confirmed that two molecules with the cryptic names S10A4 and S10A6 appear in the contact zone as soon as the NK cells have become activated by direct contact with cancer cells. The little spheres filled with ammunition arrive at the scene at the same time. They contain for example a substance called perforin, which, as its name would imply, perforates the cancer cells’ surface, essentially puncturing holes in them. “It is very likely that S10A4 and S10A6 contribute in an unknown way to the transport of these destructive molecules to their targets,” presumes Scheiter.
The HZI researchers were also able to support a current hypothesis in NK cell research at the level of the proteome: “The natural killer cells can do more than we had initially suspected,” explains Scheiter. Until recently, scientists assumed that these cells were exclusively involved in the innate immune response, where they represent a first line of defence against viral attacks. However, for some time now, there have been clues as to their ability to adapt to their environment throughout the course of their lives – a property that was rather assigned to acquired immunity only, a different branch of the immune system. According to Jänsch, “our proteomic analyses have shown that the more mature a cell, the more virus-specific its surface molecules, suggesting they are able to recall prior viral infections. Here, the lines between innate and acquired immunity become somewhat blurred.”

To know which proteins are normally found within healthy NK cells and how their composition changes during development is a major step forward in patient-specific sample analysis. Several diseases can be ascribed to defective NK cell proteins. In some cases the contact area to other cells is not correctly formed and the cell cannot perform its function. Consequences might be a weak immune system and recurring infections. In the future, we may be able to intervene using targeted drug therapy whenever a patient’s NK cells deviate from this protein standard – a first step towards personalized medicine.
Original Publication:
Maxi Scheiter, Ulrike Lau, Marco van Ham, Björn Bulitta, Lothar Gröbe, Henk Garritsen, Frank Klawonn, Sebastian König & Lothar Jänsch
Proteome Analysis of Distinct Developmental Stages of Human Natural Killer Cells

A natural killer cell (top cell) encounters a cancer cell. Under the microscope the researchers are able to observe the high degree of expression of the newly discovered protein S10A6 (shown here in red) at the contact surface.

Maxi Scheiter/HZI

Molecular & Cellular Proteomics 2013


The research group “Cellular Proteome Research” studies changes in the proteome, the sum total of a cell’s proteins. These offer clues as to which processes are being switched on or off inside immune cells and which ones are being manipulated by pathogens.

The Helmholtz Centre for Infection Research (HZI):
The Helmholtz Centre for Infection Research contributes to the achievement of the goals of the Helmholtz Association of German Research Centres and to the successful implementation of the research strategy of the German Federal Government. The goal is to meet the challenges in infection research and make a contribution to public health with new strategies for the prevention and therapy of infectious diseases.

http://www.helmholtz-hzi.de/en

Dr. Birgit Manno | Helmholtz-Zentrum
Further information:
http://www.helmholtz-hzi.de/en
http://www.helmholtz-hzi.de/en/news_events/news/view/article/complete/natural_killer_cells_the_bodys_own_patrol_against_viruses_and_tum

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>