Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Natural killer cells – the body’s own patrol against viruses and tumours

14.01.2013
Setting the stage for personalised medicine, researchers decode major immune cell's protein content
Scientists at the Helmholtz Centre for Infection Research (HZI) have analysed for the first time all the proteins inside natural killer (NK) cells of healthy individuals. The newly discovered “protein repertoire” shows that these immune cells cannot only defend us against acute viral infections but they can also store information about earlier infections. The researchers have identified new proteins that help to determine NK cell condition. These findings may improve the basis for personalized therapies.

To effectively fight off different kinds of pathogens, the human immune system has become highly specialized. Defending us against viruses and tumour cells is the task of NK cells. Armed with small, enzyme-containing spheres capable of causing a damaged cell to burst, these sentinels with their vicious sounding name patrol our bodies. When prompted to do so, they fire their ammunition at other cells across a specialized contact surface. As we grow older, our NK cells also age and mature. Scientists at HZI, Braunschweig City Hospital, and Ostfalia University of Applied Sciences recently characterized what happens inside these cells during this process. They published their findings in the scientific journal Molecular & Cellular Proteomics.

“We have isolated NK cells at varying stages of maturation from the blood of healthy individuals. Using accurate mass spectrometry, we managed to analyse which proteins they produce,” explains HZI scientist Maxi Scheiter. Since proteins have a key role in many of the cell's functions - as enzymes, signalling molecules, or building blocks, to name only a few - the researchers are now able to draw conclusions as to their jobs within the cell. “We discovered more than 3,400 proteins inside cells at different stages of maturation. They suggest that NK cell development in humans is highly similar to what was known before from experiments in mice,” says Prof. Lothar Jänsch, head of HZI’s Cellular Proteome Research unit. The massive amounts of data that have come out of this research were analysed with the help of biostatistical algorithms by Ostfalia University’s Prof. Frank Klawonn.

Among the identified proteins were some whose role in natural killer cells was previously unknown. “We were very interested in identifying these proteins' functions inside the immune cells,” explains Scheiter. “We therefore labelled two of the most promising candidates using a special dye and then examined them under the fluorescence microscope to localize them within the cell.” The view through the microscope confirmed that two molecules with the cryptic names S10A4 and S10A6 appear in the contact zone as soon as the NK cells have become activated by direct contact with cancer cells. The little spheres filled with ammunition arrive at the scene at the same time. They contain for example a substance called perforin, which, as its name would imply, perforates the cancer cells’ surface, essentially puncturing holes in them. “It is very likely that S10A4 and S10A6 contribute in an unknown way to the transport of these destructive molecules to their targets,” presumes Scheiter.
The HZI researchers were also able to support a current hypothesis in NK cell research at the level of the proteome: “The natural killer cells can do more than we had initially suspected,” explains Scheiter. Until recently, scientists assumed that these cells were exclusively involved in the innate immune response, where they represent a first line of defence against viral attacks. However, for some time now, there have been clues as to their ability to adapt to their environment throughout the course of their lives – a property that was rather assigned to acquired immunity only, a different branch of the immune system. According to Jänsch, “our proteomic analyses have shown that the more mature a cell, the more virus-specific its surface molecules, suggesting they are able to recall prior viral infections. Here, the lines between innate and acquired immunity become somewhat blurred.”

To know which proteins are normally found within healthy NK cells and how their composition changes during development is a major step forward in patient-specific sample analysis. Several diseases can be ascribed to defective NK cell proteins. In some cases the contact area to other cells is not correctly formed and the cell cannot perform its function. Consequences might be a weak immune system and recurring infections. In the future, we may be able to intervene using targeted drug therapy whenever a patient’s NK cells deviate from this protein standard – a first step towards personalized medicine.
Original Publication:
Maxi Scheiter, Ulrike Lau, Marco van Ham, Björn Bulitta, Lothar Gröbe, Henk Garritsen, Frank Klawonn, Sebastian König & Lothar Jänsch
Proteome Analysis of Distinct Developmental Stages of Human Natural Killer Cells

A natural killer cell (top cell) encounters a cancer cell. Under the microscope the researchers are able to observe the high degree of expression of the newly discovered protein S10A6 (shown here in red) at the contact surface.

Maxi Scheiter/HZI

Molecular & Cellular Proteomics 2013


The research group “Cellular Proteome Research” studies changes in the proteome, the sum total of a cell’s proteins. These offer clues as to which processes are being switched on or off inside immune cells and which ones are being manipulated by pathogens.

The Helmholtz Centre for Infection Research (HZI):
The Helmholtz Centre for Infection Research contributes to the achievement of the goals of the Helmholtz Association of German Research Centres and to the successful implementation of the research strategy of the German Federal Government. The goal is to meet the challenges in infection research and make a contribution to public health with new strategies for the prevention and therapy of infectious diseases.

http://www.helmholtz-hzi.de/en

Dr. Birgit Manno | Helmholtz-Zentrum
Further information:
http://www.helmholtz-hzi.de/en
http://www.helmholtz-hzi.de/en/news_events/news/view/article/complete/natural_killer_cells_the_bodys_own_patrol_against_viruses_and_tum

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>