Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Natural gas instead of crude oil

08.12.2011
UniCat Cluster of Excellence and BASF establish joint lab on raw material change at the TU Berlin

On December 8, 2011, the Cluster of Excellence “Unifying Concepts in Catalysis” (UniCat) and chemical company BASF SE signed a cooperation agreement establishing a new joint lab dedicated to the development of new catalytic processes for raw material change. The move promotes the search for alternatives to petroleum, in particular the use of natural gas. The long term goal is to ensure the continued future availability of raw materials for the production of chemicals.

Swimsuits, yogurt tubs and sunscreen have one thing in common: chemically, they all have their origins in petroleum. Petroleum prices are set to rise continuously in the coming years as supplies dwindle. Natural gas is a promising alternative – but before it can be processed into fibers, plastics and pigments, it first needs to undergo chemical reactions to convert it to basic chemicals. Catalysis increases the reaction capacity of the main component of natural gas, methane. About 80% of all chemical products today are manufactured using heterogeneous catalysts. Catalysts help to save energy and raw materials on a sustainable basis. The joint lab is intended to speed up the transfer of basic heterogeneous catalysis research results to industrial applications.

BASF SE and Technische Universität Berlin are putting substantial resources into setting up the UniCat-BASF Joint Lab. BASF plans to invest up to €6.4 million during the first five years. The total volume amounts to about €13 million. Twelve postdocs and postgrads will do research in the 900 square meter lab. Installation of equipment for catalyst synthesis, characterization and testing starts in January 2012.

Prof. Dr.-Ing. Jörg Steinbach, President of TU Berlin, commented: “The UniCat-BASF Joint Lab will strengthen Campus Charlottenburg’s science base. The new lab is an important element in the latest round of the competition for excellence.”

Dr. Friedrich Seitz, head of the BASF Competence Center Chemicals Research and Engineering, stressed the alliance’s strategic importance: “Natural gas, carbon dioxide and biomass can replace petroleum as raw materials for the chemical industry in the future. Before that happens, a number of challenges remain to be solved. The UniCat-BASF Joint Lab helps us to pursue multidisciplinary approaches in catalysis for raw material change, especially when it comes to activating less reactive molecules,” he explained.

“The establishment of the ‚UniCat-BASF Joint Lab’ will bring the scientific results of our research alliance to fruition more quickly for industrial use,” said Prof. Dr. Matthias Drieß, chair ofthe UniCat Cluster of Excellence.

“The ‘UniCat-BASF Joint Lab’ not only creates new jobs, it also inspires new ideas for cooperative ventures with internationally leading companies in raw material change and sustainable chemistry,” commented undersecretary of state Dr. Knut Nevermann, Berlin Senate Department of Education, Youth Affairs and Science.

A number of UniCat teams have been instrumental in the success of the project. The “UniCat-BASF Joint Lab“ is to be assigned a steering committee made up of UniCat chair Prof. Dr. Matthias Drieß, Fritz Haber Institute representative Prof. Dr. Robert Schlögl, and the head of the BASF Competence Center Chemicals Research and Engineering, Dr. Friedrich Seitz.

About UniCat
“Unifying Concepts in Catalysis” (UniCat) is the Cluster of Excellence within the framework of the German Initiative for Excellence researching the economically important field of catalysis. More than 250 chemists, physicists, biologists and engineers from four universities and two Max Planck research institutes from Berlin and Potsdam are involved in this interdisciplinary research network. The Cluster is hosted by the Technische Universität Berlin. The subject areas covered range from the chemical conversion of natural and biogas, the activation of carbon dioxide and the creation of hydrogen from light and water, to the synthesis of active ingredients using enzymes.
About BASF
BASF is the world’s leading chemical company: The Chemical Company. Its portfolio ranges from chemicals, plastics, performance products and agricultural products to oil and gas. As a reliable partner BASF creates chemistry to help its customers in virtually all industries to be more successful. With its high-value products and intelligent solutions, BASF plays an important role in finding answers to global challenges such as climate protection, energy efficiency, nutrition and mobility. BASF posted sales of about €63.9 billion in 2010 and had approximately 109,000 employees as of the end of the year. BASF shares are traded on the stock exchanges in Frankfurt (BAS), London (BFA) and Zurich (AN). Further information on BASF is available on the Internet at www.basf.com or in its Social Media Newsroom at newsroom.basf.com.

Media contacts:

BASF
Corporate Media Relations
Christian Böhme
Phone: +49 (0)621 60 20 130
E-mail: christian.boehme@basf.com
TU Berlin
UniCat Cluster of Excellence
Dr. Martin Penno
Phone: +49 (0)30 314 28 592
martin.penno@unicat.tu-berlin.de

Stefanie Terp | idw
Further information:
http://www.tu-berlin.de

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>