Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Natural gas instead of crude oil

08.12.2011
UniCat Cluster of Excellence and BASF establish joint lab on raw material change at the TU Berlin

On December 8, 2011, the Cluster of Excellence “Unifying Concepts in Catalysis” (UniCat) and chemical company BASF SE signed a cooperation agreement establishing a new joint lab dedicated to the development of new catalytic processes for raw material change. The move promotes the search for alternatives to petroleum, in particular the use of natural gas. The long term goal is to ensure the continued future availability of raw materials for the production of chemicals.

Swimsuits, yogurt tubs and sunscreen have one thing in common: chemically, they all have their origins in petroleum. Petroleum prices are set to rise continuously in the coming years as supplies dwindle. Natural gas is a promising alternative – but before it can be processed into fibers, plastics and pigments, it first needs to undergo chemical reactions to convert it to basic chemicals. Catalysis increases the reaction capacity of the main component of natural gas, methane. About 80% of all chemical products today are manufactured using heterogeneous catalysts. Catalysts help to save energy and raw materials on a sustainable basis. The joint lab is intended to speed up the transfer of basic heterogeneous catalysis research results to industrial applications.

BASF SE and Technische Universität Berlin are putting substantial resources into setting up the UniCat-BASF Joint Lab. BASF plans to invest up to €6.4 million during the first five years. The total volume amounts to about €13 million. Twelve postdocs and postgrads will do research in the 900 square meter lab. Installation of equipment for catalyst synthesis, characterization and testing starts in January 2012.

Prof. Dr.-Ing. Jörg Steinbach, President of TU Berlin, commented: “The UniCat-BASF Joint Lab will strengthen Campus Charlottenburg’s science base. The new lab is an important element in the latest round of the competition for excellence.”

Dr. Friedrich Seitz, head of the BASF Competence Center Chemicals Research and Engineering, stressed the alliance’s strategic importance: “Natural gas, carbon dioxide and biomass can replace petroleum as raw materials for the chemical industry in the future. Before that happens, a number of challenges remain to be solved. The UniCat-BASF Joint Lab helps us to pursue multidisciplinary approaches in catalysis for raw material change, especially when it comes to activating less reactive molecules,” he explained.

“The establishment of the ‚UniCat-BASF Joint Lab’ will bring the scientific results of our research alliance to fruition more quickly for industrial use,” said Prof. Dr. Matthias Drieß, chair ofthe UniCat Cluster of Excellence.

“The ‘UniCat-BASF Joint Lab’ not only creates new jobs, it also inspires new ideas for cooperative ventures with internationally leading companies in raw material change and sustainable chemistry,” commented undersecretary of state Dr. Knut Nevermann, Berlin Senate Department of Education, Youth Affairs and Science.

A number of UniCat teams have been instrumental in the success of the project. The “UniCat-BASF Joint Lab“ is to be assigned a steering committee made up of UniCat chair Prof. Dr. Matthias Drieß, Fritz Haber Institute representative Prof. Dr. Robert Schlögl, and the head of the BASF Competence Center Chemicals Research and Engineering, Dr. Friedrich Seitz.

About UniCat
“Unifying Concepts in Catalysis” (UniCat) is the Cluster of Excellence within the framework of the German Initiative for Excellence researching the economically important field of catalysis. More than 250 chemists, physicists, biologists and engineers from four universities and two Max Planck research institutes from Berlin and Potsdam are involved in this interdisciplinary research network. The Cluster is hosted by the Technische Universität Berlin. The subject areas covered range from the chemical conversion of natural and biogas, the activation of carbon dioxide and the creation of hydrogen from light and water, to the synthesis of active ingredients using enzymes.
About BASF
BASF is the world’s leading chemical company: The Chemical Company. Its portfolio ranges from chemicals, plastics, performance products and agricultural products to oil and gas. As a reliable partner BASF creates chemistry to help its customers in virtually all industries to be more successful. With its high-value products and intelligent solutions, BASF plays an important role in finding answers to global challenges such as climate protection, energy efficiency, nutrition and mobility. BASF posted sales of about €63.9 billion in 2010 and had approximately 109,000 employees as of the end of the year. BASF shares are traded on the stock exchanges in Frankfurt (BAS), London (BFA) and Zurich (AN). Further information on BASF is available on the Internet at www.basf.com or in its Social Media Newsroom at newsroom.basf.com.

Media contacts:

BASF
Corporate Media Relations
Christian Böhme
Phone: +49 (0)621 60 20 130
E-mail: christian.boehme@basf.com
TU Berlin
UniCat Cluster of Excellence
Dr. Martin Penno
Phone: +49 (0)30 314 28 592
martin.penno@unicat.tu-berlin.de

Stefanie Terp | idw
Further information:
http://www.tu-berlin.de

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>