Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Natural fungus may provide effective bed bug control

21.11.2012
"And don't let the bed bugs bite" is no longer a harmless adage. In reality today, these bloodthirsty bugs infest thousands of homes.

According to a team of Penn State entomologists, biopesticides -- naturally occurring microorganisms -- might provide an answer to this pest problem. Bed bugs need blood meals for growth and development throughout their life cycle.

Increased travel, widespread insecticide resistance and changes in management practices have caused a resurgence in those insects throughout North America and Europe. Compounding the problem are concerns about the safety of using traditional chemicals in the domestic environment.

According to Nina Jenkins, senior research associate in entomology, preliminary bioassays on the effects of Beauveria bassiana -- a natural fungus that causes disease in insects -- on bed bug control have been performed, and the results are encouraging. She and her colleagues report their results in the most recent issue of the Journal of Invertebrate Pathology.

Jenkins, working with Alexis Barbarin, a former Penn State postgraduate student now at the University of Pennsylvania, Edwin Rajotte, professor of entomology, and Matthew Thomas, professor of entomology, looked at how B. bassiana acts through contact with its insect host.

"They are natural diseases that exist in the environment," said Jenkins. "They are relatively easy to produce in a lab and stable, so you can use them much like chemical pesticides."

In the study, the researchers used an airbrush sprayer to apply spore formulations to paper and cotton jersey, a common bed sheet material. Then control surfaces, again paper and cotton jersey, were sprayed with blank oil only. The surfaces were allowed to dry at room temperature overnight. Three groups of 10 bed bugs were then exposed to one of the two surfaces for one hour. Afterward, they were placed on clean filter paper in a petri dish and monitored.

The researchers found that all of the bed bugs exposed to the biopesticide became infected and died within five days.

Also, there were no prominent differences in susceptibility by feeding status, sex, strain or life stage. Most importantly, the infected bed bugs carried the biopesticide back to their hiding places, infecting those that did not go out in search of blood.

"We exposed half of a population of bed bugs to a spray residue for one hour and then allowed them to go into a harborage with unexposed individuals," said Jenkins. "The fungal spores were transferred from the exposed bug to their unexposed companions, and we observed almost a hundred percent infection. So they don't even need to be directly exposed, and that's something chemicals cannot do."

This result is important because bed bugs live in hard-to-reach places.

"Bed bugs tend to be cryptic, and they'll hide in the tiniest crevices," said Jenkins. "They don't just live in your bed. They hide behind light switches and power sockets and in between the cracks of the baseboard and underneath your carpet."

The speed of mortality with B. bassiana is as fast as Jenkins has seen in any application, but it doesn't even need to be that fast.

"If you are trying to protect a farmer's field, he wants the insects that are eating his crop dead immediately," said Jenkins. "Obviously, if you have bed bugs in your house, you don't want them there for any longer than you have to, but what you really want to know is if they've all gone at the end of the treatment, and I think that's something that this technology could offer."

Next, the researchers will test the effectiveness of brief exposure times and look at entire populations where natural harborages are established. Then they will begin field work.

"It's exciting, and it definitely works," said Jenkins. "We're working on the next step, and we have more funding to support these studies."

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>