Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Natural fungus may provide effective bed bug control

21.11.2012
"And don't let the bed bugs bite" is no longer a harmless adage. In reality today, these bloodthirsty bugs infest thousands of homes.

According to a team of Penn State entomologists, biopesticides -- naturally occurring microorganisms -- might provide an answer to this pest problem. Bed bugs need blood meals for growth and development throughout their life cycle.

Increased travel, widespread insecticide resistance and changes in management practices have caused a resurgence in those insects throughout North America and Europe. Compounding the problem are concerns about the safety of using traditional chemicals in the domestic environment.

According to Nina Jenkins, senior research associate in entomology, preliminary bioassays on the effects of Beauveria bassiana -- a natural fungus that causes disease in insects -- on bed bug control have been performed, and the results are encouraging. She and her colleagues report their results in the most recent issue of the Journal of Invertebrate Pathology.

Jenkins, working with Alexis Barbarin, a former Penn State postgraduate student now at the University of Pennsylvania, Edwin Rajotte, professor of entomology, and Matthew Thomas, professor of entomology, looked at how B. bassiana acts through contact with its insect host.

"They are natural diseases that exist in the environment," said Jenkins. "They are relatively easy to produce in a lab and stable, so you can use them much like chemical pesticides."

In the study, the researchers used an airbrush sprayer to apply spore formulations to paper and cotton jersey, a common bed sheet material. Then control surfaces, again paper and cotton jersey, were sprayed with blank oil only. The surfaces were allowed to dry at room temperature overnight. Three groups of 10 bed bugs were then exposed to one of the two surfaces for one hour. Afterward, they were placed on clean filter paper in a petri dish and monitored.

The researchers found that all of the bed bugs exposed to the biopesticide became infected and died within five days.

Also, there were no prominent differences in susceptibility by feeding status, sex, strain or life stage. Most importantly, the infected bed bugs carried the biopesticide back to their hiding places, infecting those that did not go out in search of blood.

"We exposed half of a population of bed bugs to a spray residue for one hour and then allowed them to go into a harborage with unexposed individuals," said Jenkins. "The fungal spores were transferred from the exposed bug to their unexposed companions, and we observed almost a hundred percent infection. So they don't even need to be directly exposed, and that's something chemicals cannot do."

This result is important because bed bugs live in hard-to-reach places.

"Bed bugs tend to be cryptic, and they'll hide in the tiniest crevices," said Jenkins. "They don't just live in your bed. They hide behind light switches and power sockets and in between the cracks of the baseboard and underneath your carpet."

The speed of mortality with B. bassiana is as fast as Jenkins has seen in any application, but it doesn't even need to be that fast.

"If you are trying to protect a farmer's field, he wants the insects that are eating his crop dead immediately," said Jenkins. "Obviously, if you have bed bugs in your house, you don't want them there for any longer than you have to, but what you really want to know is if they've all gone at the end of the treatment, and I think that's something that this technology could offer."

Next, the researchers will test the effectiveness of brief exposure times and look at entire populations where natural harborages are established. Then they will begin field work.

"It's exciting, and it definitely works," said Jenkins. "We're working on the next step, and we have more funding to support these studies."

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>