Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Natural dissolved organic matter plays dual role in cycling of mercury

13.01.2011
Nature has a bit of a Jekyll and Hyde relationship with mercury, but researchers at the Department of Energy's Oak Ridge National Laboratory have made a discovery that ultimately could help explain the split personality.

While scientists have known that microbes in aquatic environments make methylmercury, a more toxic form of mercury that accumulates in fish, they also know that nature and other types of bacteria can transform methylmercury to less toxic forms. What they haven't completely understood are the mechanisms that cause these transformations in anoxic environments - lacking in oxygen - in nature.

"Until now, reactions between elemental mercury and dissolved organic matter have rarely been studied in anoxic environments," said Baohua Gu of the the lab's Environmental Sciences Division.

In a paper published in the Proceedings of the National Academy of Sciences, a team led by Gu reports that compounds from the decay of organic matter in aquatic settings affect mercury cycling. Low concentrations of these compounds can chemically reduce mercury, but as those concentrations increase, that reaction is greatly inhibited. They performed their experiments by simulating conditions found in nature.

"This study demonstrates that in anoxic sediments and water, organic matter is not only capable of reducing mercury, but also binding to mercury," said co-author Liyuan Liang. "This binding could make mercury less available to microorganisms for making methylmercury."

The authors also noted that their paper offers a mechanism that helps explain the seemingly contradictory reports on the interaction of organic matter and mercury in nature.

Gu and Liang hope this newly gained knowledge will play a role in helping to understand how mercury cycles in aquatic and sediment environments and help in informed decision-making for mercury-impacted sites around the nation.

"Our long-term goal is to understand the mechanisms controlling the production of methylmercury in the environment, " Liang said. "This understanding could lead to ways to reduce levels of mercury in fish as this is a global problem of enormous significance."

Mercury is distributed around the globe mainly through the burning of coal, industrial uses and through natural processes such as volcano eruptions. Various forms of mercury are widely found in sediments and water.

This research benefits from ORNL's expertise in field-to-laboratory geochemistry and microbiology, computational modeling and simulation, world-class neutron sources and high-performance computing.

Other authors of the paper, "Mercury reduction and complexation by natural organic matter in anoxic environments," are Carrie Miller and Wenming Dong of ORNL and Yongrong Bian and Xin Jiang, visiting scientists from the Chinese Academy of Science.

This five-year mercury science focus area program (http://www.esd.ornl.gov/programs/rsfa/index.shtml), begun in 2009, is funded by DOE's Office of Science.

UT-Battelle manages ORNL for DOE's Office of Science.

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>