Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Natural-born divers and the molecular traces of evolution

01.07.2009
An aquatic lifestyle imposes serious demands for the organism, and this is true even for the tiniest molecules that form our body.

When the ancestors of present marine mammals initiated their return to the oceans, their physiology had to adapt radically to the new medium. Dr. Michael Berenbrink and his colleagues at Liverpool University have been studying how myoglobin, the molecule responsible for delivering oxygen to the muscles during locomotion, has been modified in seals and whales to help them cope with the needs of a life at sea.

The researchers have found evidence indicating that the net positive charge of this protein is increased in marine mammals compared with terrestrial relatives, and they have speculated that this may help improving the solubility of the molecule. This is important as divers may contain 10 times more myoglobin in their muscles than terrestrial animals. The team has also found a conspicuous increase of the amino acid histidine in the myoglobin of strong divers, which may allow the animal to deal better with the accumulation of lactic acid that is frequent during long dives (the same build up is the cause of the cramps we sometimes get during strenuous exercise).

In order to confirm that this was indeed the result of evolutionary pressure, they went on to study the molecular sequence of myoglobin in small aquatic mammals such as beavers, muskrats and water shrews, which only dive for considerably shorter periods of time, to see if they could also find evidence for the same trend. Indeed, the net charge of the myoglobin molecule in aquatic rodents was twice as high compared to their strictly terrestrial relatives, and the trend was also verified for some semi-aquatic species of insectivores. Graduate student Scott Mirceta will be presenting these latest results at the Society of Experimental Biology Annual Meeting in Glasgow on Monday 29th June 2009.

The net electric charge of any protein is directly related to the charge of its individual amino acids, and therefore it can be predicted if the amino acid sequence is known. Dr. Berenbrink's team have determined large parts of the myoglobin sequence for four different species of insectivores, and combined it with the analysis of already published sequences from other species to reach their conclusions. They were careful to select species with close terrestrial relatives that could be used as a natural control group during the sequence comparison, so that differences at the molecular level could be safely assumed to be the product of their habitat preference.

"This work will contribute to our understanding of protein solubility in general", explains Dr.Berenbrink. "It will also allow the analysis of natural selection on protein structure/function in multiple parallel cases in which a high muscle myogobin content evolved, such as in divers but also in burrowing animals that normally experience hypoxia".

Cristian C. A. Bodo | EurekAlert!
Further information:
http://www.sebiology.org

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>