Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Natural anti-oxidant deserts aging body

31.08.2011
Cell’s reserve fighting force shrinks with age, new study finds.

When the body fights oxidative damage, it calls up a reservist enzyme that protects cells – but only if those cells are relatively young, a study has found.

Biologists at USC discovered major declines in the availability of an enzyme, known as the Lon protease, as human cells grow older.

The finding may help explain why humans lose energy with age and could point medicine toward new diets or pharmaceuticals to slow the aging process.

The researchers showed that when oxidative agents attack the power centers of young cells, the cells respond by calling up reinforcements of the enzyme, which breaks up and removes damaged proteins.

As the cells age, they lose the ability to mobilize large numbers of Lon, the researchers reported in The Journals of Gerontology.

Senior author Kelvin J. A. Davies, a professor at the USC Leonard Davis School of Gerontology, used a war analogy to explain that no "standing army" of Lon protease can endure an attack by invading oxidants without calling up reserves.

"Once the war has started, what's your capacity to keep producing … to protect your vital resources and keep the fight going?" he asked.

Since aging is the longest war, the USC study suggests a more important role for the reservist enzyme than previously known.

Lon protects the mitochondria – tiny organisms in the cell that convert oxygen into energy. The conversion is never perfect: Some oxygen leaks and combines with other elements to create damaging oxidants.

Oxidation is the process behind rust and food spoilage. In the body, oxidation can damage or destroy almost any tissue. Lon removes oxidized proteins from the mitochondria and also plays a vital role in helping to make new mitochondria.

"We know that mitochondrial function declines with age, which is a major limitation to cells. One of the components of that decline is the loss of Lon. The ability of Lon to be induced by [oxidative] stress is a very important component of overall stress resistance," Davies said.

Davies and his team worked with a line of human lung cells. They exposed the cells to hydrogen peroxide, a powerful oxidant that is a byproduct of energy production and that also can result from metabolism of some drugs, toxins, pesticides and herbicides.

To fight the oxidant, young cells doubled the size of their Lon army within five hours and maintained it for a day. In some experiments, young cells increased their Lon army as much as seven-fold.

Middle-aged cells took a full day to double their Lon army, during which time the cells were exposed to harmful levels of oxidized proteins.

Older cells started with a standing Lon army only half as large and showed no statistically significant increase in Lon levels over 24 hours.

The Davies group, which discovered Lon in 2002, previously had shown that Lon's standing army gets smaller with age and that the anti-oxidant power of Lon depends more on its reserves than on enzymes present when stress first hits the body.

The latest study completes the picture of Lon's sluggish response as senescent cells – a technical term for cells that mimic several key features of the aging process – try to cope with stress.

"In the senescent cells, the Lon levels are drastically low to begin with, and they don't increase" in response to stress, Davies said.

Scientists have known for decades that mitochondria become less efficient with age, contributing to the body's loss of energy.

"It may well be that our ability to induce Lon synthesis and our loss of adaptability to stress may be an even more significant factor in the aging process," Davies said.

Davies and others are investigating potential treatments to boost the function of Lon. Costly enzyme supplements are useless, Davies noted, since the digestive system breaks down the enzyme to amino acids before it can reach its target.

"It's a lot cheaper to buy a piece of meat and get the same amino acids," he said.

Davies holds the James E. Birren Chair in Gerontology, with a joint appointment in molecular biology at the USC Dornsife College of Letters, Arts and Sciences.

His co-authors were USC postdoctoral fellow Jenny Ngo, undergraduate students Laura Pomatto and Alison Koop, and former graduate student Daniela Bota, now an assistant professor at the University of California, Irvine Medical Center.

Funding for the research came from the National Institute of Environmental Health Sciences, part of the National Institutes of Health.

Carl Marziali | EurekAlert!
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>