Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Natural anti-oxidant deserts aging body

31.08.2011
Cell’s reserve fighting force shrinks with age, new study finds.

When the body fights oxidative damage, it calls up a reservist enzyme that protects cells – but only if those cells are relatively young, a study has found.

Biologists at USC discovered major declines in the availability of an enzyme, known as the Lon protease, as human cells grow older.

The finding may help explain why humans lose energy with age and could point medicine toward new diets or pharmaceuticals to slow the aging process.

The researchers showed that when oxidative agents attack the power centers of young cells, the cells respond by calling up reinforcements of the enzyme, which breaks up and removes damaged proteins.

As the cells age, they lose the ability to mobilize large numbers of Lon, the researchers reported in The Journals of Gerontology.

Senior author Kelvin J. A. Davies, a professor at the USC Leonard Davis School of Gerontology, used a war analogy to explain that no "standing army" of Lon protease can endure an attack by invading oxidants without calling up reserves.

"Once the war has started, what's your capacity to keep producing … to protect your vital resources and keep the fight going?" he asked.

Since aging is the longest war, the USC study suggests a more important role for the reservist enzyme than previously known.

Lon protects the mitochondria – tiny organisms in the cell that convert oxygen into energy. The conversion is never perfect: Some oxygen leaks and combines with other elements to create damaging oxidants.

Oxidation is the process behind rust and food spoilage. In the body, oxidation can damage or destroy almost any tissue. Lon removes oxidized proteins from the mitochondria and also plays a vital role in helping to make new mitochondria.

"We know that mitochondrial function declines with age, which is a major limitation to cells. One of the components of that decline is the loss of Lon. The ability of Lon to be induced by [oxidative] stress is a very important component of overall stress resistance," Davies said.

Davies and his team worked with a line of human lung cells. They exposed the cells to hydrogen peroxide, a powerful oxidant that is a byproduct of energy production and that also can result from metabolism of some drugs, toxins, pesticides and herbicides.

To fight the oxidant, young cells doubled the size of their Lon army within five hours and maintained it for a day. In some experiments, young cells increased their Lon army as much as seven-fold.

Middle-aged cells took a full day to double their Lon army, during which time the cells were exposed to harmful levels of oxidized proteins.

Older cells started with a standing Lon army only half as large and showed no statistically significant increase in Lon levels over 24 hours.

The Davies group, which discovered Lon in 2002, previously had shown that Lon's standing army gets smaller with age and that the anti-oxidant power of Lon depends more on its reserves than on enzymes present when stress first hits the body.

The latest study completes the picture of Lon's sluggish response as senescent cells – a technical term for cells that mimic several key features of the aging process – try to cope with stress.

"In the senescent cells, the Lon levels are drastically low to begin with, and they don't increase" in response to stress, Davies said.

Scientists have known for decades that mitochondria become less efficient with age, contributing to the body's loss of energy.

"It may well be that our ability to induce Lon synthesis and our loss of adaptability to stress may be an even more significant factor in the aging process," Davies said.

Davies and others are investigating potential treatments to boost the function of Lon. Costly enzyme supplements are useless, Davies noted, since the digestive system breaks down the enzyme to amino acids before it can reach its target.

"It's a lot cheaper to buy a piece of meat and get the same amino acids," he said.

Davies holds the James E. Birren Chair in Gerontology, with a joint appointment in molecular biology at the USC Dornsife College of Letters, Arts and Sciences.

His co-authors were USC postdoctoral fellow Jenny Ngo, undergraduate students Laura Pomatto and Alison Koop, and former graduate student Daniela Bota, now an assistant professor at the University of California, Irvine Medical Center.

Funding for the research came from the National Institute of Environmental Health Sciences, part of the National Institutes of Health.

Carl Marziali | EurekAlert!
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>