Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Natural anti-oxidant deserts aging body

31.08.2011
Cell’s reserve fighting force shrinks with age, new study finds.

When the body fights oxidative damage, it calls up a reservist enzyme that protects cells – but only if those cells are relatively young, a study has found.

Biologists at USC discovered major declines in the availability of an enzyme, known as the Lon protease, as human cells grow older.

The finding may help explain why humans lose energy with age and could point medicine toward new diets or pharmaceuticals to slow the aging process.

The researchers showed that when oxidative agents attack the power centers of young cells, the cells respond by calling up reinforcements of the enzyme, which breaks up and removes damaged proteins.

As the cells age, they lose the ability to mobilize large numbers of Lon, the researchers reported in The Journals of Gerontology.

Senior author Kelvin J. A. Davies, a professor at the USC Leonard Davis School of Gerontology, used a war analogy to explain that no "standing army" of Lon protease can endure an attack by invading oxidants without calling up reserves.

"Once the war has started, what's your capacity to keep producing … to protect your vital resources and keep the fight going?" he asked.

Since aging is the longest war, the USC study suggests a more important role for the reservist enzyme than previously known.

Lon protects the mitochondria – tiny organisms in the cell that convert oxygen into energy. The conversion is never perfect: Some oxygen leaks and combines with other elements to create damaging oxidants.

Oxidation is the process behind rust and food spoilage. In the body, oxidation can damage or destroy almost any tissue. Lon removes oxidized proteins from the mitochondria and also plays a vital role in helping to make new mitochondria.

"We know that mitochondrial function declines with age, which is a major limitation to cells. One of the components of that decline is the loss of Lon. The ability of Lon to be induced by [oxidative] stress is a very important component of overall stress resistance," Davies said.

Davies and his team worked with a line of human lung cells. They exposed the cells to hydrogen peroxide, a powerful oxidant that is a byproduct of energy production and that also can result from metabolism of some drugs, toxins, pesticides and herbicides.

To fight the oxidant, young cells doubled the size of their Lon army within five hours and maintained it for a day. In some experiments, young cells increased their Lon army as much as seven-fold.

Middle-aged cells took a full day to double their Lon army, during which time the cells were exposed to harmful levels of oxidized proteins.

Older cells started with a standing Lon army only half as large and showed no statistically significant increase in Lon levels over 24 hours.

The Davies group, which discovered Lon in 2002, previously had shown that Lon's standing army gets smaller with age and that the anti-oxidant power of Lon depends more on its reserves than on enzymes present when stress first hits the body.

The latest study completes the picture of Lon's sluggish response as senescent cells – a technical term for cells that mimic several key features of the aging process – try to cope with stress.

"In the senescent cells, the Lon levels are drastically low to begin with, and they don't increase" in response to stress, Davies said.

Scientists have known for decades that mitochondria become less efficient with age, contributing to the body's loss of energy.

"It may well be that our ability to induce Lon synthesis and our loss of adaptability to stress may be an even more significant factor in the aging process," Davies said.

Davies and others are investigating potential treatments to boost the function of Lon. Costly enzyme supplements are useless, Davies noted, since the digestive system breaks down the enzyme to amino acids before it can reach its target.

"It's a lot cheaper to buy a piece of meat and get the same amino acids," he said.

Davies holds the James E. Birren Chair in Gerontology, with a joint appointment in molecular biology at the USC Dornsife College of Letters, Arts and Sciences.

His co-authors were USC postdoctoral fellow Jenny Ngo, undergraduate students Laura Pomatto and Alison Koop, and former graduate student Daniela Bota, now an assistant professor at the University of California, Irvine Medical Center.

Funding for the research came from the National Institute of Environmental Health Sciences, part of the National Institutes of Health.

Carl Marziali | EurekAlert!
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>