Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Native Plant Fares Well in Pilot Green Roof Research Study

16.10.2012
In a UC pilot study of plants best suited for the region’s green roofs, the North American native, nodding wild onion, and a sedum commonly known as goldmoss sedum were the most likely to survive both heat and little rainfall, conditions common to the area’s summer months.

As the implementation of green roofs increase, a University of Cincinnati pilot study examined which plants best thrive on the region’s roofs during the dry, hot conditions of summer.

That research, by UC biology student Jill Bader and Ishi Buffam, assistant professor of biology, identified a North American (and Ohio) native plant – nodding wild onion (Allium cernuum) and a European sedum (Sedum acre, also known as goldmoss sedum) as suited to survive and thrive on the region’s green roofs.

Their research will be presented in a paper titled “Ohio Native Plants On a Green Roof: Evaluation of Survival and Impact on Stormwater Runoff” at the CitiesAlive 2012 conference, sponsored by Green Roofs for Healthy Cities Oct. 17-20 in Chicago.

“Our research will help inform the design of green roofs specific for this region, and therefore increase their chances of being successful, and being adopted in Midwestern cities. There are many potential benefits to green roofs, including building energy savings, extension of roof life, reduced air and noise pollution, creation of environment for native birds and insects and, of course, reduced storm water runoff,” said Buffam.

Bader and Buffam tested four Ohio native plants and one sedum to see which was the most likely to survive on an extensive green roof in the late summer of 2011. All plants were tested under two conditions: dependent on rainfall only and receiving regular watering. The testing took place at the Cincinnati Center for Field Studies in Harrison, Ohio.

All plants receiving regular watering survived.

However, heath aster (Aster ericoides), flowering spurge (Euphorbia corollata) and lanced-leaved loosestrife (Lysimachia lanceolata) did not survive when receiving rainfall as their only water source.

When receiving only rainfall, the nodding wild onion (A. cernuum) and the goldmoss sedum (S. acre) were stressed but survived.

All of these plants were selected for testing because their natural habitat is prairie or meadow, where exposure to full sun and dry conditions are typical.

According to Bader, “We tested the plants because one of the most critical choices for the success of a green roof is the choice of plant species. The environment on a rooftop is characterized by severe drought, elevated temperatures, high light intensity, high winds and the layer of soil for the plants is generally shallower than it would be for plants in typical settings.”

In fact, a contributing factor in the success of S. acre and A. cernuum to survive was shallow root systems, paired with characteristics that allow them to efficiently use water during hot, dry conditions. In the case of A. cernuum, it’s a bulb which can store water for later use by the plant, and in the case of S. acre, it’s the relatively thick foliage and CAM photosynthesis. (CAM photosynthesis is an adaptation by plants living in arid conditions that allows stoma or tiny pores in the foliage to close during the day in order to retain moisture but opening at night in order to complete part of the photosynthesis process.)

Bader and Buffam added that environmental conditions vary widely by geographic regions in North America. There are hundreds of eco-regions in North America, and that demands study of which plants work best in each region.

In addition to testing which Ohio native plants could best survive on an extensive green roof, Bader and Buffam also tested the impact of plant species to reduce water runoff, one of the important functions of a green roof. (In other words, which of the tested plants best retained water, such that the water was absorbed vs. running into the sewer system.)

In this preliminary test, the native species receiving moisture only from rainfall (vs. regular watering) retained 51 percent of rainfall on average, but there was no significant difference among the species in their abilities to absorb water and reduce total runoff quantity. Those plants receiving regular watering retained 44 percent of rainfall on average.

This pilot study was supported by UC’s Julia Hammler Wendell Scholarship Fund, Women in Science and Engineering (WISE) Program and Cincinnati Center for Field Studies at Miami Whitewater Forest, a research station partnership between the University of Cincinnati and the Hamilton County Park District.

M.B. Reilly | EurekAlert!
Further information:
http://www.uc.edu

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>