Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

National Search for Proteins That Cause MS

26.08.2009
Australian researchers will aim to discover the proteins that cause multiple sclerosis (MS), thanks to a new nationwide research effort.

The national research project is the first of its kind in Australia and one of the first of its kind in the world.

"This collaborative research project has the potential to find crucial answers about a debilitating disease that affects millions of people worldwide," says the Hon. Mark Butler MP, Parliamentary Secretary for Health.

More than 2.5 million people worldwide have MS, with the disease costing the Australian community alone an estimated $2 billion each year. Despite considerable research efforts so far, there are few effective treatments for MS.

The new research project will receive funding of $1 million over four years, starting this year, under the Australian Research Council's Linkage Projects funding scheme and from MS Research Australia (MSRA), the research arm of MS Australia.

The research is a major national collaboration between the University of Adelaide, Monash University, University of Queensland and the Sir Charles Gairdner Hospital, with the University of Adelaide as lead institution.

"With MS, there are a number of major stages that occur in the disease, including activation and remission," says the lead investigator, Professor Shaun McColl (School of Molecular & Biomedical Science, University of Adelaide).

"At each of these major stages, certain genes are activated. Those genes express proteins, and we believe these could have the effect of switching the disease on and off. If we can discover the key proteins and their roles in the development of MS, we could go a long way towards finding potential treatments or cures for the condition," he says.

The area of research involved in discovering such proteins is known as proteomics.

"There is no doubt that identification of a set of proteins that are specifically linked to different stages and pathological processes in MS will provide insight into the disease," says Professor Claude Bernard (Multiple Sclerosis Research Lab, Monash University). "It will also help evaluate the prognosis of patients with MS, guide their treatment and provide novel therapeutic approaches," he says.

Mr Jeremy Wright, Executive Director of MS Research Australia, says: "This is a natural step for MSRA to help researchers make important new discoveries that will translate into real outcomes for people with MS. Together with the ARC, we are investing $1 million into this promising new area for MS research."

Facts about MS

* Multiple sclerosis is an autoimmune disease in which the body's own immune cells attack a person's central nervous system.
* MS affects the ability of nerve cells in the brain and spinal cord to communicate with each other.
* More than 2.5 million people around the world have MS.
* Three out of every four people diagnosed are women.
* MS is the most common neurological disease in young adults. It often strikes when a person is at their most active, usually in their early 20s, with increasing professional, social and/or family responsibilities.

Media contact:

Professor Shaun McColl
Deputy Head, School of Molecular & Biomedical Science
The University of Adelaide
Office phone: + 61 8 8303 4259
Cell phone: +61 414 303 425
Email: shaun.mccoll@adelaide.edu.au

Professor Shaun McColl | Newswise Science News
Further information:
http://www.adelaide.edu.au

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>