Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Caught Tropical Cyclone Hellen's Rainfall Near Peak

02.04.2014

When Tropical Cyclone Hellen was near the "peak of her career" NASA's TRMM satellite picked up on her popularity in terms of tropical rainfall. Hellen was a very heavy rainmaker in her heyday with heavy rain rates. Hellen weakened to a remnant low pressure area by April 1, but has now re-emerged in the Mozambique Channel.

Tropical Cyclone Hellen formed in the Mozambique Channel northwest of Madagascar on March 28, 2014. Hellen became a very powerful tropical cyclone with peak sustained winds of 130 knots/about 150 mph/241 kph on March 30, 2014. Hellen's eye came ashore in northwestern Madagascar on March 31 with winds predicted to be about 95 knots/109 mph/176 kph. 


On March 30, the TRMM satellite showed some powerful storms in Hellen's eye wall were reaching heights of over 13 km/8 miles.

Image Credit: SSAI/NASA, Hal Pierce

NASA and the Japan Aerospace Exploration Agency's Tropical Rainfall Measuring Mission satellite known as TRMM passed above Hellen on March 30, 2014 at 17:47 UTC/1:47 p.m. EDT when the tropical cyclone was close to peak power.

A TRMM rainfall analysis that was derived from TRMM's Microwave Imager (TMI) and Precipitation Radar (PR) data collected found that rain was falling at a rate of over 44 mm/1.7 inches per hour near the eye. Bands of moderate to heavy rain were shown moving over the northwestern coast of Madagascar.

... more about:
»Cyclone »EDT »Exploration »Flight »JTWC »Mozambique »NASA »Radar »Space »TRMM »Typhoon »UTC »knots »tropical »winds

TRMM PR data were collected at the same time in a swath that passed near the northern edge of tropical cyclone Hellen's eye wall. Those data were used to create a simulated 3-D view of Hellen's precipitation and also revealed that some powerful storms in Hellen's eye wall were reaching heights of over 13 km/8 miles.

Hellen seemed to run out of steam over Madagascar and the Joint Typhoon Warning Center issued the final warning on the tropical low pressure area on April 1 at 0300 UTC/March 31 at 11 p.m. EDT. AT that time, Hellen was centered near 17.0 south latitude and 46.1 east longitude, about 130 nautical miles/~150 miles/~241 km north-northwest of Antananarivo, Madagascar. Hellen was trudging to the south-southeast at 5 knots/5.7 mph/9.2 kph as it continued weakening. 

Thirty minutes after the last warning from the JTWC, Hellen's remnants had moved back over water in the Mozambique Channel. The JTWC noted that because of favorable conditions such as warm water and low wind shear, the storm could regenerate in the next couple of days.

Text credit:  Harold F. Pierce / Rob Gutro
SSAI/NASA Goddard Space Flight Center

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/content/goddard/hellen-southern-indian-ocean/

Further reports about: Cyclone EDT Exploration Flight JTWC Mozambique NASA Radar Space TRMM Typhoon UTC knots tropical winds

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>