Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanowire biocompatibility in the brain: so far so good

22.10.2009
The biological safety of nanotechnology, in other words, how the body reacts to nanoparticles, is a hot topic. Researchers at Lund University in Sweden have managed for the first time to carry out successful experiments involving the injection of so-called 'nanowires.'

In the future it is expected that it will be possible to insert nanoscale electrodes to study learning and memory functions and to treat patients suffering from chronic pain, depression, and diseases such as Parkinson's. But it is not known what would happen if the nanoelectrodes would break away from their contact points.

Scientists at Lund University have investigated this 'worst case by injecting nanowires in rat brains. The nanowires resemble in size and shape the registration nodes of electrodes of the future. The results show that the brain 'clean-up cells' (microglia), take care of the wires. After twelve weeks only minor differences were observed between the brains of the test group and the control group. The findings are published in Nano Letters.

"The results indicate that this is a feasible avenue to pursue in the future. Now we have a better base on which to develop more advanced and more useful electrodes than those we have today," explains Christelle Prinz, a scientist in Solid State Physics at the Faculty of Engineering (LTH), who, together with Cecilia Eriksson Linsmeier at the Faculty of Medicine, is the lead author of the article 'Nanowire biocompatibility in the brain - Looking for a needle in a 3D stack.'

Electrodes are already used today to counteract symptoms of Parkinson's disease, for instance. Future nanotechnology may enable refined and enhanced treatment and pave the way for entirely new applications.

One advantage of nanoscale electrodes is that they can register and stimulate the tiniest components of the brain. To study the biological safety - the biocompatibility - of these electrodes, the scientists first produced nanowires that were then mixed into a fluid that was injected into the rat brains. An equal number of rats were given the solution without the nanowires. After 1, 6, and 12 weeks, respectively, the researchers looked at how the rat brains were reacting to the nanowires.

The research project is run by the university's interdisciplinary Neuronano Research Center (NRC), coordinated by Jens Schouenborg at the Faculty of Medicine and funded by a Linnaeus grant and the Wallenberg Foundation, among others. The work has involved scientists from the Faculty of Medicine and from the Nanometer Consortium, directed by Lars Samuelson, LTH.

"We studied two of the brain tissue's support cells: on the one hand, microglia cells, whose job is to 'tidy up' junk and infectious compounds in the brain and, on the other hand, astrocytes, who contribute to the brain's healing process. The microglia 'ate' most of the nanowires. In weeks 6 and 12 we could see remains of them in the microglia cells," says Nils Danielsen, a researcher with the NRC.

The number of nerve cells remained constant for test and control groups, which is a positive sign. The greatest difference between the test and control groups was that the former had a greater astrocyte reaction at one week, but this level eventually declined. At weeks 6 and 12 the scientists were not able to detect any difference at all.

"Together with other findings and given that the number of microglial cells decreased over time, the results indicate that the brain was not damaged or chronically injured by the nanowires," Christelle Prinz concludes.

Authors: Cecilia Linsmeier Eriksson, Christelle N. Prinz, Lina ME Pettersson, Philippe Caroff, Lars Samuelson, Jens Schouenborg, Lars Montelius, Nils Danielsen.

For more information, please contact:
Christelle Prinz phone: +46-46 222 47 96, christelle.prinz@ftf.lth.se; cell phone: +46-768 75 23 15, or Nils Danielsen, phone: +46-46 222 03 00; cell phone: +46-070 548 09 09 nils.danielsen@med.lu.se

Pressofficer Kristina Lindgärde; +46-709753 500; kristina.lindgarde@kansli.lth.se

Kristina Lindgärde | idw
Further information:
http://pubs.acs.org/doi/abs/10.1021/nl902413x
http://www.vr.se

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>