Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotubes Fast Forward Seed Germination

30.10.2009
A collaborative team of biologists and nanotechnologists from UALR – the University of Arkansas at Little Rock – have demonstrated how seeds exposed to carbon nanotubes in the agar medium sprouted up to two times faster than control seed, a growth enhancement that has enormous potential on agriculture as well as plant-based biofuel production.

Drs. Mariya V. Khodakovskaya, UALR assistant professor of applied science, and Alex Biris, director of the Nanotechnology Center at UALR, published the results of their findings in this month’s issue of ACS Nano.

The results of the UALR experiments demonstrated, apparently for the first time, that carbon nanotubes can penetrate thick seed coat and quicker water uptake inside seeds.

“The activated process of water uptake could be responsible for the significantly faster germination rates and higher biomass production for the plants that were exposed to carbon nanotubes,” the scientists said.

To test their theory that synthesized carbon nanotubes could affect germination and development of crop seedlings, the UALR team placed sterile tomato seeds on standard agar medium supplemented with different concentrations of carbon nanotubes. A medium without the tubes was used for controlled experiments.

Tomato seeds placed on medium with various concentrations of carbon nanotubes (CNTs) germinated on the third day, while the tomato seeds placed on regular mediums had not germinated by that time. The germination percentage rates during the next days were dramatically higher for seeds that were treated with nanoparticles.

The germination percentage for seeds that were placed on regular medium averaged 32 percent in 12 days and 71 percent in 20 days, while germination percentage of the seeds placed on medium supplemented with CNTs averaged 74 to 82 percent in 12 days and 90 percent in 20 days.

The scientists report the first evidence that CNTs penetrate the hard outer coating of seeds, and have beneficial effects.

Nanotube-exposed seeds sprouted up to two times faster than control seeds and the seedlings weighed more than twice as much as the untreated plants. Those effects may occur because nanotubes penetrate the seed coat and boost water uptake, the researchers said.

Joan I. Duffy | Newswise Science News
Further information:
http://www.ualr.edu

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>