Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotubes Fast Forward Seed Germination

30.10.2009
A collaborative team of biologists and nanotechnologists from UALR – the University of Arkansas at Little Rock – have demonstrated how seeds exposed to carbon nanotubes in the agar medium sprouted up to two times faster than control seed, a growth enhancement that has enormous potential on agriculture as well as plant-based biofuel production.

Drs. Mariya V. Khodakovskaya, UALR assistant professor of applied science, and Alex Biris, director of the Nanotechnology Center at UALR, published the results of their findings in this month’s issue of ACS Nano.

The results of the UALR experiments demonstrated, apparently for the first time, that carbon nanotubes can penetrate thick seed coat and quicker water uptake inside seeds.

“The activated process of water uptake could be responsible for the significantly faster germination rates and higher biomass production for the plants that were exposed to carbon nanotubes,” the scientists said.

To test their theory that synthesized carbon nanotubes could affect germination and development of crop seedlings, the UALR team placed sterile tomato seeds on standard agar medium supplemented with different concentrations of carbon nanotubes. A medium without the tubes was used for controlled experiments.

Tomato seeds placed on medium with various concentrations of carbon nanotubes (CNTs) germinated on the third day, while the tomato seeds placed on regular mediums had not germinated by that time. The germination percentage rates during the next days were dramatically higher for seeds that were treated with nanoparticles.

The germination percentage for seeds that were placed on regular medium averaged 32 percent in 12 days and 71 percent in 20 days, while germination percentage of the seeds placed on medium supplemented with CNTs averaged 74 to 82 percent in 12 days and 90 percent in 20 days.

The scientists report the first evidence that CNTs penetrate the hard outer coating of seeds, and have beneficial effects.

Nanotube-exposed seeds sprouted up to two times faster than control seeds and the seedlings weighed more than twice as much as the untreated plants. Those effects may occur because nanotubes penetrate the seed coat and boost water uptake, the researchers said.

Joan I. Duffy | Newswise Science News
Further information:
http://www.ualr.edu

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>