Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotube Construction Set

14.11.2008
Molecular trees and sugar cuffs are components for nanotubes with tailored surfaces

Organic nanotubes could make rapid strides as functional nanomaterials in a new approach to nanoelectronics and biomedicine, as they can be made of easily varied and modified building blocks.

Researchers led by Chulhee Kim at the Inha University in South Korea have recently developed nanotubes made of dendrons and cyclodextrins. As reported in the journal Angewandte Chemie, they have now successfully functionalized the surfaces of the tubes so that, among other things, they can be used to make biosensors for the detection of a specific protein.

Dendron is the Greek word for tree. Dendrons are tree-shaped branched molecules. Kim and Chiyoung Park selected a molecular “tree” with four long hydrocarbon chains as “branches”. At the end of the “trunk” they attached a pyrene group, a system made of four aromatic carbon rings. In solution, these dendrons come together “branch to branch” to form vesicles, or tiny bubbles. If the researchers add cyclodextrins, which are ring-shaped closed chains of glucose rings, each of these settles around a pyrene group like a cuff. This makes it more favorable for the dendrons to group themselves into long nanoscopic tubes whose surfaces are coated with the cyclodextrin “cuffs”.

What makes this concept into a truly universal construction set is that the cyclodextrins can easily be equipped with a large variety of functional groups, which then dangle out into the solution from the surfaces of the tubes. The team was thus able to attach special groups that like to bind gold nanoparticles. Nanotubes that are densely covered in metal particles could have interesting applications in nanoelectronics.

The pyrene groups on the nanotubes have another special advantage: they fluoresce. This property allows them to be used in the design of biosensors. To demonstrate this concept, the researchers constructed a specific test for the protein avidin. They equipped the surfaces of the nanotubes with biotin, a biomolecule that specifically binds the proteins avidin and streptavidin. If streptavidin bound to gold nanoparticles is added, these bind to the nanotubes by way of the biotin anchors. This brings the gold particles into the vicinity of the pyrene groups, which causes them to interact electronically, “switching off” the fluorescence. If the protein avidin and the gold-bound streptavidin are added, biotin anchors on the surface of the tube preferentially bind avidin. Pyrene groups in the vicinity of avidin fluoresce. The fluorescence quencher gold-strepavidin can only bind to the binding sites not occupied by avidin. The intensity of the fluorescence therefore depends on the avidin concentration.

Author: Chulhee Kim, Inha University, Incheon (South Korea), http://webhome.inha.ac.kr/fplab/Professor.htm

Title: Tunable Fluorescent Dendron-Cyclodextrin Nanotubes for Hybridization with Metal Nanoparticles and their Biosensory Function

Angewandte Chemie International Edition 2008, 47, No. 51, doi: 10.1002/anie.200804087

Chulhee Kim | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://webhome.inha.ac.kr/fplab/Professor.htm

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>