Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotechnology: A dead end for plant cells?

17.11.2010
New study examines nanoparticles’ effects on plants

Using particles that are 1/100,000 the width of a human hair to deliver drugs to cells or assist plants in fighting off pests may sound like something out of a science fiction movie, but these scenarios may be a common occurrence in the near future.

Carbon nanotubes, cylindrically shaped carbon molecules with a diameter of about 1 nanometer, have many potential applications in a variety of fields, such as biomedical engineering and medical chemistry. Proteins, nucleic acids, and drugs can be attached to these nanotubes and delivered to cells and organs. Carbon nanotubes can be used to recognize and fight viruses and other pathogens. However, results of studies in animals have also raised concerns about the potential toxicity of nanoparticles.

Recent research by a team of researchers from China, led by Dr. Nan Yao, explored the effects of nanoparticles on plant cells. The findings of Dr. Yao and his colleagues are published in the October issue of the American Journal of Botany (http://www.amjbot.org/cgi/reprint/97/10/1602).

Dr. Yao and his team of researchers isolated cells from rice as well as from the model plant species Arabidopsis. The researchers treated these cells with carbon nanotubes, and then assessed the cells for viability, damage to DNA, and the presence of reactive oxygen species.

The researchers found an increase in levels of the reactive oxygen species hydrogen peroxide. Reactive oxygen species cause oxidative stress to cells, and this stress can result in programmed cell death. Dr. Yao and his colleagues discovered that the effect of carbon nanotubes on cells was dosage dependent—the greater the dose, the greater the likelihood of cell death. In contrast, cells exposed to carbon particles that were not nanotubes did not suffer any ill effects, demonstrating that the size of the nanotubes is a factor in their toxicity.

"Nanotechnology has a large scope of potential applications in the agriculture industry, however, the impact of nanoparticles have rarely been studied in plants," Dr. Yao said. "We found that nanomaterials could induce programmed cell death in plant cells."

Despite the scientists' observations that carbon nanotubes had toxic effects on plant cells, the use of nanotechnology in the agriculture industry still has great promise. The scientists only observed programmed cell death as a temporary response following the injection of the nanotubes and did not observe further changes a day and a half after the nanotube treatments. Also, the researchers did not observe death at the tissue level, which indicates that injecting cells with carbon nanotubes caused only limited injury.

"The current study has provided evidence that certain carbon nanoparticles are not 100% safe and have side effects on plants, suggesting that potential risks of nanotoxicity on plants need to be assessed," Dr. Yao stated. In the future, Dr. Yao and colleagues are interested in investigating whether other types of nanoparticles may also have toxic effects on plant cells. "We would like to create a predictive toxicology model to track nanoparticles."

Only once scientists have critically examined the risks of nanoparticles can they take advantage of the tremendous potential benefits of this new technology.

CITATION: Cong-Xiang Shen, Quan-Fang Zhang, Jian Li, Fang-Cheng Bi, and Nan Yao (2010). Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. American Journal of Botany 97(10): 1602-1609. DOI: 10.3732/ajb.1000073

The full article in the link mentioned is available for no charge for 30 days following the date of this summary at http://www.amjbot.org/cgi/reprint/97/10/1602. After this date, reporters may contact Richard Hund at ajb@botany.org for a copy of the article.

The Botanical Society of America (www.botany.org) is a non-profit membership society with a mission to promote botany, the field of basic science dealing with the study and inquiry into the form, function, development, diversity, reproduction, evolution, and uses of plants and their interactions within the biosphere. It has published the American Journal of Botany (www.amjbot.org) for nearly 100 years. In 2009, the Special Libraries Association named the American Journal of Botany one of the Top 10 Most Influential Journals of the Century in the field of Biology and Medicine.

For further information, please contact the AJB staff at ajb@botany.org.

Richard Hund | EurekAlert!
Further information:
http://www.botany.org

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>