Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanostructures created at UCLA could make gene therapies safer, faster & more affordable

15.03.2018

New method uses 'nanospears' to deliver genes directly to patient cells

UCLA scientists have developed a new method that utilizes microscopic splinter-like structures called "nanospears" for the targeted delivery of biomolecules such as genes straight to patient cells. These magnetically guided nanostructures could enable gene therapies that are safer, faster and more cost-effective.


This image shows an array of nanospears before being released for delivery of genetic information to cells.

Credit: UCLA Broad Stem Cell Research Center/ACS Nano

The research was published in the journal ACS Nano by senior author Paul Weiss, UC Presidential Chair and distinguished professor of chemistry and biochemistry, materials science and engineering, and member of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA.

Gene therapy, the process of adding or replacing missing or defective genes in patient cells, has shown great promise as a treatment for a host of diseases, including hemophilia, muscular dystrophy, immune deficiencies and certain types of cancer.

Current gene therapy approaches rely on modified viruses, external electrical fields or harsh chemicals to penetrate cell membranes and deliver genes straight to patient cells. Each of these methods has its own shortcomings; they can be costly, inefficient or cause undesirable stress and toxicity to cells.

To overcome these barriers, Weiss and Dr. Steven Jonas, a clinical fellow in the UCLA Broad Stem Cell Research Center Training Program, led a research team that designed nanospears composed of silicon, nickel and gold. These nanospears are biodegradable, can be mass-produced inexpensively and efficiently, and, because of their infinitesimal size -- their tips are about 5,000 times smaller than the diameter of a strand of human hair -- they can deliver genetic information with minimal impact on cell viability and metabolism.

Jonas compared the cutting-edge biomolecule delivery method to real-world delivery methods appearing on the horizon.

"Just as we hear about Amazon wanting to deliver packages straight to your house with drones, we're working on a nanoscale equivalent of that to deliver important health care packages straight to your cells," explained Jonas, who is training in the division of pediatric hematology/oncology at UCLA Mattel Children's Hospital. In the near future, Jonas hopes to apply nanotechnologies to deploy cell and gene therapies quickly and widely to the pediatric cancer patients he treats.

The construction of nanospears was inspired by the work of their collaborators, Hsian-Rong Tseng, a professor of molecular and medical pharmacology, and Xiaobin Xu, a postdoctoral fellow in Weiss' interdisciplinary research group. Tseng and Xu are both co-authors of the study.

"Based on Xiaobin's nanomanufacturing work, we knew how to make nanostructures of different shapes in massive numbers using simple fabrication strategies," said Weiss, who is also a member of the California NanoSystems Institute. "Once we had that in hand, we realized we could make precise structures that would be of value in gene therapies."

Weiss and Jonas are not the first to conceive of using guided nanostructures or robotic "nanomotors" to enhance gene therapies, however existing methods have limited precision and require potentially toxic chemicals to propel the structures to their targets.

By coating their nanospears with nickel, Weiss and Jonas eliminated the need for chemical propellants. A magnet can be held near a lab dish containing cells to manipulate the direction, position and rotation of one or many nanospears. In the future, Weiss and Jonas envision that a magnetic field could be applied outside of the human body to guide nanospears remotely within the body to treat genetic diseases.

Weiss and Jonas tested their nanospears as vehicles for a gene that causes cells to produce a green fluorescent protein. About 80 percent of targeted cells exhibited a bright green glow, and 90 percent of those cells survived. Both numbers are a marked improvement on existing delivery strategies.

Much like gene therapy, many forms of immunotherapy -- a process in which patient-specific immune cells are genetically engineered to recognize and attack cancer cells -- rely on expensive or time-consuming processing methods.

"The biggest barrier right now to getting either a gene therapy or an immunotherapy to patients is the processing time," Jonas said. "New methods to generate these therapies more quickly, effectively and safely are going to accelerate innovation in this research area and bring these therapies to patients sooner, and that's the goal we all have."

Weiss and Jonas have been collaborating with UCLA researchers to optimize the delivery of gene therapy strategies that have long been in the works.

"One of the amazing things about working at UCLA is that for each of the targeted diseases, we collaborate with leading clinicians who already have gene therapies in development," Weiss said. "They have the gene-editing cargo, model cells, animal models and patient cells in place so we are able to optimize our nanosystems on methods that are on the pathway to the clinic."

###

The research was supported by the National Science Foundation, the National Institutes of Health, Hyundai Hope on Wheels, Alex's Lemonade Stand Foundation for Childhood Cancer, the National Science Foundation of China, the China Scholarship Council, the Royal Thai Government as well as the UCLA Broad Stem Cell Research Center Training Program.

Media Contact

Mirabai Vogt-James
mvogt@mednet.ucla.edu
310-983-1163

 @uclahealth

http://www.uclahealth.org/ 

Mirabai Vogt-James | EurekAlert!
Further information:
http://newsroom.ucla.edu/releases/nanostructures-created-by-ucla-scientists-could-make-gene-therapies-safer-faster-and-more-affordable
http://dx.doi.org/10.1021/acsnano.8b00763

More articles from Life Sciences:

nachricht New type of photosynthesis discovered
17.06.2018 | Imperial College London

nachricht New ID pictures of conducting polymers discover a surprise ABBA fan
17.06.2018 | University of Warwick

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>