Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoshuttle Wear and Tear: It’s the Mileage, Not the Age

27.01.2015

As nanomachine design rapidly advances, researchers are moving from wondering if the nanomachine works to how long it will work.

This is an especially important question as there are so many potential applications, for instance, for medical uses, including drug delivery, early diagnosis, disease monitoring, instrumentation, and surgery.


Coneyl Jayasinhe for Columbia Engineering

Molecular shuttles are a nanoscale transport system in which microtubules (acting as cargo carriers) are propelled by surface-adhered kinesin motor proteins. Researchers have found that as the microtubules are propelled by the kinesin motors, tubulin subunits are removed from the leading end.

In a new study led by Henry Hess, associate professor of biomedical engineering at Columbia Engineering, researchers observed a molecular shuttle powered by kinesin motor proteins and found it to degrade when operating, marking the first time, they say, that degradation has been studied in detail in an active, autonomous nanomachine.

“Our nanoshuttle degraded just like a car that falls apart after a few hundred thousand miles of driving—except that, for our molecular shuttle, the equivalent to a hundred thousand miles turns out to be a millimeter,” says Hess, who collaborated on the study with his former student Emmanuel Dumont PhD’14, now an Innovation Fellow at Cornell Technion, and Catherine Do, postdoctoral research scientist in the Institute for Cancer Genetics at Columbia University Medical Center. The paper—“Molecular wear of microtubules propelled by surface-adhered kinesins”—is published January 26 in Nature Nanotechnology's Advance Online Publication.

Researchers are already working towards creating artificial muscles and other active materials, and, in order to make useful, practical systems, it is critical that they understand how to make the systems last. “What this means,” Hess explains, “is that as we try to understand the design of biological nanomachines operating inside cells and then as we try to invent new synthetic nanomachines, we have to be mindful of their lifetime and make them either last or make them able to renew themselves.”

Biomolecular systems can undergo a range of active movements at the nanoscale that are enabled by the transduction of chemical energy into mechanical work by polymerization processes and motor proteins. Hess and his team used an in vitro system to study nanoscale movement and its consequences and discovered that the mechanical activity of biomolecular motors causes wear at the molecular scale similar to the wearing out of a running car engine.

In humans, biomolecular motors are also responsible for the contraction of muscles and the delivery of packages inside cells, and, to prevent aging and disease, these process have to run smoothly for a lifetime. Biological mechanisms such as the continuous replacement of molecular parts have evolved to prevent the rapid degradation of the body’s nanomachines.

“Our study has shown that wear is an important issue which has to be considered in the design of nanomachines,” Hess adds. “And it’s clear that a better understanding of nanoengineering will help us to better understand aging and degeneration in biological systems.”

This study is supported by the National Science Foundation and facilitated by the Center for Integrated Nanotechnologies at Sandia National Labs, a DOE-supported user facility.

The authors declare no competing financial interests.

Contact Information
Holly Evarts
Director of Strategic Communications and Media Rel
holly.evarts@columbia.edu
Phone: 212-854-3206
Mobile: 347-453-7408

Holly Evarts | newswise

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>