Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoscopic Screening Process to Speed Drug Discovery

08.10.2008
Researchers at Wake Forest University are using nanotechnology to search for new cancer-fighting drugs through a process that could be up to 10,000 times faster than current methods.

The “Lab-on-Bead” process will screen millions of chemicals simultaneously using tiny plastic beads so small that 1,000 of them would fit across a human hair. Each bead carries a separate chemical, which can be identified later if it displays the properties needed to treat cancer cells. One batch of nanoscopic beads can replace the work of thousands of conventional, repetitive laboratory tests.

“This process allows the beads to do the work for you,” explains Jed Macosko, project director and assistant professor of physics at Wake Forest. “By working at this scale, we will be able to screen more than a billion possible drug candidates per day as opposed to the current limit of hundreds of thousands per day.”

Other members of the research team at Wake Forest include co-principal investigator Martin Guthold, an associate professor of physics, and Keith Bonin, department chair and professor of physics.

Macosko said the team and their collaborators at the University of Waterloo in Ontario, Canada, are developing a device that will automate the Lab-on-Bead process and permit parallel processing to attain faster screening results. The Wake Forest researchers are also working with biotechnologists at Harvard University in Boston and Université Louis Pasteur in Strasbourg, France, which are providing the chemicals being screened for drug candidates. Biotech company NanoMedica has shown interest in commercializing the process. The North Carolina Biotechnology Center, a private, nonprofit corporation funded by the N.C. General Assembly, has provided $75,000 in funding for the project.

Wake Forest’s Center for Nanotechnology and Molecular Materials, which maintains ongoing research programs in the areas of health and medicine, energy technologies and synthesis of nanomaterials, will facilitate some elements of Lab-on-Bead development.

Eric F. Frazier | Newswise Science News
Further information:
http://www.wfu.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>