Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoscaled Tip Writes Artificial Cell Membranes

15.10.2013
Biomimetic Membranes on Graphene Open up Novel Applications in Biotechnology – Publication in “Nature Communications“

Researchers around Dr. Michael Hirtz from Karlsruhe Institute of Technology and Dr. Aravind Vijayaraghavan from the University of Manchester have developed a new method to produce artificial membranes:


By means of lipid dip-pen nanolithography (L-DPN), lipid membranes are written directly onto the two-dimensional carbon graphene. (Graphics: Hirtz/Nature Communications)

Using a nanoscaled tip, they write tailored patches of phospholipid membrane onto a graphene substrate. The resulting biomimetic membranes, i.e. membranes simulating biological structures, allow for the specific investigation of functions of cell membranes and the development of novel applications in medicine and biotechnology, such as biosensors. The method is now presented online in “Nature Communications”.

Lipids (from Greek lipos, “fat”) are central structural elements of cell membranes. The human body contains about 100 trillion cells, each of which is enveloped in a cell membrane which essentially is a double layer of partly hydrophilic, partly hydrophobic phosphorus-containing lipids. These cell membranes contain numerous proteins, ion channels, and other biomolecules, each performing vital functions. It is therefore important to study cell membranes for many areas of medicine and biotechnology. Better understanding of their functions will open up novel applications, such as sensors with biological components, use of enzymes as catalysts, or specific introduction of medical substances. However, it is very difficult to study the membranes directly in live cells inside the human body.

Consequently, researchers frequently use model membranes that are applied to special surfaces. These biomimetic systems, i.e. systems simulating biological structures, are more convenient and can be controlled much better. An international group of researchers around Dr. Michael Hirtz, head of the project in the research unit of Professor Harald Fuchs at the KIT Institute of Nanotechnology (INT), and Dr. Aravind Vijayaraghavan from the University of Manchester, Great Britain, now presents a new method to produce biomimetic membranes: They write tailored patches of phospholipid membrane onto a graphene substrate by means of lipid dip-pen nanolithography (L-DPN), a method developed at KIT.

“The L-DPN technique uses a very sharp tip to write lipid membranes onto surfaces in a way similar to what a quill pen does with ink on paper,” explains Dr. Michael Hirtz from the INT. This tip has an apex in the range of a few nanometers only and is controlled with a high precision by a machine. In this way, minute structures can be produced, smaller than cells and even down to the nanoscale (1 nanometer corresponds to 10-9 meters). By employing parallel arrays of these tips, different mixtures of lipids can be written in parallel, allowing for patterns of variable chemical composition with a size smaller than that of an individual cell.

The graphene that is used as a substrate is a semi-metal with unique electronic properties. According to Dr. Aravin Vijayaraghavan from the University of Manchester, the lipids applied onto graphene spread uniformly, thus forming high-quality membranes. Other advantages of graphene are its tunable conductivity and its property to quench fluorescence of labeled phospholipids. When the lipids contain the corresponding binding sites, such as biotin, the membranes actively bind streptavidin, a protein produced by certain bacteria and used in various biotechnological methods. When the lipids are charged, charge is transferred from the lipids into graphene. This changes the conductivity of graphene, which may be used as a detection signal in biosensors.

The researchers around Hirtz will use their biomimetic membranes in the future to construct novel biosensors based on graphene and lipids. It is planned to design sensors that react to the binding of proteins by a change of conductivity as well as sensors detecting the function of ion channels in membranes. Ion channels are pore-forming proteins via which electrically charged particles can cross the membrane. “Protein sensors might be applied in medical diagnostics. Controlling the function of ion channels is important in drug research,” the KIT scientist says.

M. Hirtz, A. Oikonomou, T. Georgiou, H. Fuchs, & A. Vijayaraghavan: Multiplexed biomimetic lipid membranes on graphene by dip-pen nanolithography. Nature Communications,
10 Oct 2013 | DOI: 10.1038/ncomms3591.

Karlsruhe Institute of Technology (KIT) is a public corporation according to the legislation of the state of Baden-Württemberg. It fulfills the mission of a university and the mission of a national research center of the Helmholtz Association. Research activities focus on energy, the natural and built environment as well as on society and technology and cover the whole range extending from fundamental aspects to application. With about 9000 employees, including nearly 6000 staff members in the science and education sector, and 24000 students, KIT is one of the biggest research and education institutions in Europe. Work of KIT is based on the knowledge triangle of research, teaching, and innovation.

or, 10.10.2013

For further information, please contact:

Margarete Lehné
Presse, Kommunikation und Marketing
Phone: +49 721 608-48121
Fax: +49 721 608-45681
margarete lehne∂kit edu

Monika Landgraf | EurekAlert!
Further information:
http://www.kit.edu

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>