Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoscaled Tip Writes Artificial Cell Membranes

15.10.2013
Biomimetic Membranes on Graphene Open up Novel Applications in Biotechnology – Publication in “Nature Communications“

Researchers around Dr. Michael Hirtz from Karlsruhe Institute of Technology and Dr. Aravind Vijayaraghavan from the University of Manchester have developed a new method to produce artificial membranes:


By means of lipid dip-pen nanolithography (L-DPN), lipid membranes are written directly onto the two-dimensional carbon graphene. (Graphics: Hirtz/Nature Communications)

Using a nanoscaled tip, they write tailored patches of phospholipid membrane onto a graphene substrate. The resulting biomimetic membranes, i.e. membranes simulating biological structures, allow for the specific investigation of functions of cell membranes and the development of novel applications in medicine and biotechnology, such as biosensors. The method is now presented online in “Nature Communications”.

Lipids (from Greek lipos, “fat”) are central structural elements of cell membranes. The human body contains about 100 trillion cells, each of which is enveloped in a cell membrane which essentially is a double layer of partly hydrophilic, partly hydrophobic phosphorus-containing lipids. These cell membranes contain numerous proteins, ion channels, and other biomolecules, each performing vital functions. It is therefore important to study cell membranes for many areas of medicine and biotechnology. Better understanding of their functions will open up novel applications, such as sensors with biological components, use of enzymes as catalysts, or specific introduction of medical substances. However, it is very difficult to study the membranes directly in live cells inside the human body.

Consequently, researchers frequently use model membranes that are applied to special surfaces. These biomimetic systems, i.e. systems simulating biological structures, are more convenient and can be controlled much better. An international group of researchers around Dr. Michael Hirtz, head of the project in the research unit of Professor Harald Fuchs at the KIT Institute of Nanotechnology (INT), and Dr. Aravind Vijayaraghavan from the University of Manchester, Great Britain, now presents a new method to produce biomimetic membranes: They write tailored patches of phospholipid membrane onto a graphene substrate by means of lipid dip-pen nanolithography (L-DPN), a method developed at KIT.

“The L-DPN technique uses a very sharp tip to write lipid membranes onto surfaces in a way similar to what a quill pen does with ink on paper,” explains Dr. Michael Hirtz from the INT. This tip has an apex in the range of a few nanometers only and is controlled with a high precision by a machine. In this way, minute structures can be produced, smaller than cells and even down to the nanoscale (1 nanometer corresponds to 10-9 meters). By employing parallel arrays of these tips, different mixtures of lipids can be written in parallel, allowing for patterns of variable chemical composition with a size smaller than that of an individual cell.

The graphene that is used as a substrate is a semi-metal with unique electronic properties. According to Dr. Aravin Vijayaraghavan from the University of Manchester, the lipids applied onto graphene spread uniformly, thus forming high-quality membranes. Other advantages of graphene are its tunable conductivity and its property to quench fluorescence of labeled phospholipids. When the lipids contain the corresponding binding sites, such as biotin, the membranes actively bind streptavidin, a protein produced by certain bacteria and used in various biotechnological methods. When the lipids are charged, charge is transferred from the lipids into graphene. This changes the conductivity of graphene, which may be used as a detection signal in biosensors.

The researchers around Hirtz will use their biomimetic membranes in the future to construct novel biosensors based on graphene and lipids. It is planned to design sensors that react to the binding of proteins by a change of conductivity as well as sensors detecting the function of ion channels in membranes. Ion channels are pore-forming proteins via which electrically charged particles can cross the membrane. “Protein sensors might be applied in medical diagnostics. Controlling the function of ion channels is important in drug research,” the KIT scientist says.

M. Hirtz, A. Oikonomou, T. Georgiou, H. Fuchs, & A. Vijayaraghavan: Multiplexed biomimetic lipid membranes on graphene by dip-pen nanolithography. Nature Communications,
10 Oct 2013 | DOI: 10.1038/ncomms3591.

Karlsruhe Institute of Technology (KIT) is a public corporation according to the legislation of the state of Baden-Württemberg. It fulfills the mission of a university and the mission of a national research center of the Helmholtz Association. Research activities focus on energy, the natural and built environment as well as on society and technology and cover the whole range extending from fundamental aspects to application. With about 9000 employees, including nearly 6000 staff members in the science and education sector, and 24000 students, KIT is one of the biggest research and education institutions in Europe. Work of KIT is based on the knowledge triangle of research, teaching, and innovation.

or, 10.10.2013

For further information, please contact:

Margarete Lehné
Presse, Kommunikation und Marketing
Phone: +49 721 608-48121
Fax: +49 721 608-45681
margarete lehne∂kit edu

Monika Landgraf | EurekAlert!
Further information:
http://www.kit.edu

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>