Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nanoscale Velcro used for Molecule Transport


Biological membranes are like a guarded border. They separate the cell from the environment and at the same time control the import and export of molecules.

The nuclear membrane can be crossed via many tiny pores. Scientists at the Biozentrum and the Swiss Nanoscience Institute at the University of Basel, together with an international team of researchers, have discovered that proteins found within the nuclear pore function similar to a velcro. In “Nature Nanotechnology”, they report how these proteins can be used for controlled and selective transport of particles.

Import protein coated molecule moving on the “dirty velcro”.

(Illustration: University of Basel)

There is much traffic in our cells. Many proteins, for example, need to travel from their production site in the cytoplasm to the nucleus, where they are used to read genetic information. Pores in the nuclear membrane enable their transport into and out of the cell nucleus.

The Argovia Professor Roderick Lim, from the Biozentrum and the Swiss Nanoscience Institute at the University of Basel, studies the biophysical basics of this transport. In order to better understand this process, he has created an artificial model of the nuclear pore complex, together with scientists from Lausanne and Cambridge, which has led to the discovery that its proteins function like a nanoscale “velcro” which can be used to transport tiniest particles.

“Dirty velcro” inside the nuclear pore

Nuclear pores are protein complexes within the nuclear membrane that enables molecular exchange between the cytoplasm and nucleus. The driving force is diffusion. Nuclear pores are lined with “velcro” like proteins. Only molecules specially marked with import proteins can bind to these proteins and thus pass the pore. But for all non-binding molecules the nuclear pore acts as a barrier.

The researchers postulated that transport depends on the strength of binding to the “velcro” like proteins. The binding should be just strong enough that molecules to be transported can bind but at the same time not too tight so that they can still diffuse through the pore.

In an artificial system recreating the nuclear pore, the researchers tested their hypothesis. They coated particles with import proteins and studied their behavior on the molecular “velcro”. Interestingly, the researchers found parallels in behavior to the velcro strip as we know it.

On “clean velcro”, the particles stick immediately. However, when the “velcro” is filled or “dirtied” with import proteins, it is less adhesive and the particles begin to slide over its surface just by diffusion. “Understanding how the transport process functions in the nuclear pore complex was decisive for our discovery,” says Lim. “With the nanoscale ‘velcro’ we should be able to define the path to be taken as well as speed up the transport of selected particles without requiring external energy.”

Potential lab-on-a-chip technology applications

Lim's investigations of biomolecular transport processes form the basis for the discovery of this remarkable phenomenon that particles can be transported selectively with a molecular “velcro”. “This principle could find very practical applications, for instance as nanoscale conveyor belts, escalators or tracks,” explains Lim. This could also potentially be applied to further miniaturize lab-on-chip technology, tiny labs on chips, where this newly discovered method of transportation would make today's complex pump and valve systems obsolete.

Original source
Kai D. Schleicher, Simon L. Dettmer, Larisa E. Kapinos, Stefan Pagliara, Ulrich F. Keyser, Sylvia Jeney and Roderick Y.H. Lim
Selective Transport Control on Molecular Velcro made from Intrinsically Disordered Proteins
Nature Nanotechnology; published online 15 June 2014 | doi: 10.1038/nnano.2014.103

Further information
Prof. Dr. Roderick Lim, University of Basel, Biozentrum, and Swiss Nanoscience Institute, phone: +41 61 267 20 83, email:

Weitere Informationen: - Abstract

Katrin Bühler | Universität Basel
Further information:

Further reports about: Molecule Nanoscience Nanotechnology artificial cytoplasm found nanoscale particles pores proteins tiny velcro

More articles from Life Sciences:

nachricht New supercomputer simulations enhance understanding of protein motion and function
24.11.2015 | DOE/Oak Ridge National Laboratory

nachricht Sensor sees nerve action as it happens
24.11.2015 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

Im Focus: Climate Change: Warm water is mixing up life in the Arctic

AWI researchers’ unique 15-year observation series reveals how sensitive marine ecosystems in polar regions are to change

The warming of arctic waters in the wake of climate change is likely to produce radical changes in the marine habitats of the High North. This is indicated by...

Im Focus: Nanocarriers may carry new hope for brain cancer therapy

Berkeley Lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier

Glioblastoma multiforme, a cancer of the brain also known as "octopus tumors" because of the manner in which the cancer cells extend their tendrils into...

All Focus news of the innovation-report >>>



Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Siemens Healthcare introduces the Cios family of mobile C-arms

20.10.2015 | Event News

Latest News

Siemens offers concrete solution portfolio for Industrie 4.0 with Digital Enterprise

24.11.2015 | Trade Fair News

Compact, rugged, three-phase power supplies for worldwide use

24.11.2015 | Trade Fair News

Sensor sees nerve action as it happens

24.11.2015 | Life Sciences

More VideoLinks >>>