Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nanoscale neuronal activity measured for the first time

A new technique that allows scientists to measure the electrical activity in the communication junctions of the nervous systems has been developed by a researcher at Queen Mary University of London.

The junctions in the central nervous systems that enable the information to flow between neurons, known as synapses, are around 100 times smaller than the width of a human hair (one micrometer and less) and as such are difficult to target let alone measure.

By applying a high-resolution scanning probe microscopy that allows three-dimensional visualisation of the structures, the team were able to measure and record the flow of current in small synaptic terminals for the first time.

“We replaced the conventional low-resolution optical system with a high-resolution microscope based on a nanopipette,” said Dr Pavel Novak, a bioengineering specialist from Queen Mary’s School of Engineering and Materials Science.

“The nanopipette hovers above the surface of the sample and scans the structure to reveal its three-dimensional topography. The same nanopipette then attaches to the surface at selected locations on the structure to record electrical activity. By repeating the same procedure for different locations of the neuronal network we can obtain a three-dimensional map of its electrical properties and activity.”

The research, published today in Neuron, opens a new window into the neuronal activity at nanometre scale, and may contribute to the wider effort of understanding the function of the brain represented by the Brain Activity Map Project (BRAIN initiative), which aims to map the function of each individual neuron in the human brain.

The research also involves scientists from University College London and Imperial College London.

Nanoscale targeted patch clamp recordings of functional presynaptic ion channel is published in the journal Neuron on Wednesday 18 September.

For more information, please contact:

Neha Okhandiar
Public Relations Manager
Queen Mary, University of London
020 7882 7927
Queen Mary University of London
Queen Mary University of London is one of the UK's leading research-focused higher education institutions with some 17,840 undergraduate and postgraduate students.
A member of the Russell Group, it is amongst the largest of the colleges of the University of London. Queen Mary’s 4,000staff deliver world class degree programmes and research across 21 academic departments and institutes, within three Faculties: Science and Engineering; Humanities and Social Sciences; and the School of Medicine and Dentistry.
Queen Mary is ranked 11th in the UK according to the Guardian analysis of the 2008 Research Assessment Exercise, and has been described as ‘the biggest star among the research-intensive institutions’ by the Times Higher Education.
The College has a strong international reputation, with around 20 per cent of students coming from over 100 countries. Queen Mary has an annual turnover of £300m, research income worth £90m, and generates employment and output worth £600m to the UK economy each year.

The College is unique amongst London's universities in being able to offer a completely integrated residential campus, with a 2,000-bed award-winning Student Village on its Mile End Campus.

Neha Okhandiar | Queen Mary University of London
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>