Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanorods developed in UC Riverside lab could greatly improve visual display of information

15.03.2011
Technology has potential applications in a wide variety of color displays

Chemists at the University of California, Riverside have developed tiny, nanoscale-size rods of iron oxide particles in the lab that respond to an external magnetic field in a way that could dramatically improve how visual information is displayed in the future.

Previously, Yadong Yin's lab showed that when an external magnetic field is applied to iron oxide particles in solution, the solution changes color in response to the strength and orientation of the magnetic field. Now his lab has succeeded in applying a coating of silica (silicon dioxide) to the iron oxide particles so that when they come together in solution, like linearly connected spheres, they eventually form tiny rods – or "nanorods" – that permanently retain their peapod-like structure.

When an external magnetic field is applied to the solution of nanorods, they align themselves parallel to one another like a set of tiny flashlights turned in one direction, and display a brilliant color.

"We have essentially developed tunable photonic materials whose properties can be manipulated by changing their orientation with external fields," said Yin, an assistant professor of chemistry. "These nanorods with configurable internal periodicity represent the smallest possible photonic structures that can effectively diffract visible light. This work paves the way for fabricating magnetically responsive photonic structures with significantly reduced dimensions so that color manipulation with higher resolution can be realized."

Applications of the technology include high-definition pattern formation, posters, pictures, energy efficient color displays, and devices like traffic signals that routinely use a set of colors. Other applications are in bio- and chemical sensing as well as biomedical labeling and imaging. Color displays that currently cannot be seen easily in sunlight – for example, a laptop screen – will be seen more clearly and brightly on devices that utilize the nanorod technology since the rods simply diffract a color from the visible light incident on them.

Study results appear online today (March 14) in Angewandte Chemie. The research will be highlighted on the back cover of an upcoming print issue.

In the lab, Yin and his graduate students Yongxing Hu and Le He initially coated the magnetic iron oxide molecules with a thin layer of silica. Then they applied a magnetic field to assemble the particles into chains. Next, they coated the chains with an additional layer of silica to allow for a silica shell to form around and stabilize the chain structure.

According to the researchers, the timing of magnetic field exposure is critically important to the success of the chain formation because it allows for fine-tuning the "interparticle" spacing – the distance between any two particles – within photonic chains. They report that the chaining of the magnetic particles needs to be induced by brief exposure to external fields during the silica coating process so that the particles temporarily stay connected, allowing additional silica deposition to then fix the chains into mechanically robust rods or wires.

They also report in the research paper that the interparticle spacing within the chains in a sample can be fine-tuned by adjusting the timing of the magnetic field exposure; the length of the individual chains, which does not affect the color displayed, can be controlled by changing the duration of the magnetic field exposure.

"The photonic nanorods that we developed disperse randomly in solution in the absence of a magnetic field, but align themselves and show diffraction color instantly when an external field is applied," Yin said. "It is the periodic arrangement of the iron oxide particles that effectively diffracts visible light and displays brilliant colors."

He explained that all the one-dimensional photonic rods within a sample show a single color because the particles arrange themselves with uniform periodicity – that is, the interparticle spacing within all the chains is the same, regardless of the length of the individual chains. Further, the photonic chains remain separated from each other in magnetic fields due to the magnetic repulsive force that acts perpendicular to the direction of the magnetic field.

The researchers note that a simple and convenient way to change the periodicity in the rods is to use iron oxide clusters of different sizes. This, they argue, would make it possible to produce photonic rods with diffraction wavelengths across a wide range of spectrum from near ultraviolet to near infrared.

"One major advantage of the new technology is that it hardly requires any energy to change the orientation of the nanorods and achieve brightness or a color," Yin said. "A current drawback, however, is that the interparticle spacing within the chains gets fixed once the silica coating is applied, allowing for no flexibility and only one color to be displayed."

His lab is working now on achieving bistability for the nanorods. If the lab is successful, the nanorods would be capable of diffracting two colors, one at a time.

"This would allow the same device or pixel to display one color for a while and a different color later," said Yin, a Cottrell Scholar.

A grant to Yin from the National Science Foundation supported the study.

The UCR Office of Technology Commercialization has filed numerous patent applications covering various aspects of Yin's technology, and is currently in negotiations to finalize a commercial license with a California corporation that will develop the technology for market.

The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 20,500 students. The campus will open a medical school in 2012 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion.

A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>