Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanorods developed in UC Riverside lab could greatly improve visual display of information

15.03.2011
Technology has potential applications in a wide variety of color displays

Chemists at the University of California, Riverside have developed tiny, nanoscale-size rods of iron oxide particles in the lab that respond to an external magnetic field in a way that could dramatically improve how visual information is displayed in the future.

Previously, Yadong Yin's lab showed that when an external magnetic field is applied to iron oxide particles in solution, the solution changes color in response to the strength and orientation of the magnetic field. Now his lab has succeeded in applying a coating of silica (silicon dioxide) to the iron oxide particles so that when they come together in solution, like linearly connected spheres, they eventually form tiny rods – or "nanorods" – that permanently retain their peapod-like structure.

When an external magnetic field is applied to the solution of nanorods, they align themselves parallel to one another like a set of tiny flashlights turned in one direction, and display a brilliant color.

"We have essentially developed tunable photonic materials whose properties can be manipulated by changing their orientation with external fields," said Yin, an assistant professor of chemistry. "These nanorods with configurable internal periodicity represent the smallest possible photonic structures that can effectively diffract visible light. This work paves the way for fabricating magnetically responsive photonic structures with significantly reduced dimensions so that color manipulation with higher resolution can be realized."

Applications of the technology include high-definition pattern formation, posters, pictures, energy efficient color displays, and devices like traffic signals that routinely use a set of colors. Other applications are in bio- and chemical sensing as well as biomedical labeling and imaging. Color displays that currently cannot be seen easily in sunlight – for example, a laptop screen – will be seen more clearly and brightly on devices that utilize the nanorod technology since the rods simply diffract a color from the visible light incident on them.

Study results appear online today (March 14) in Angewandte Chemie. The research will be highlighted on the back cover of an upcoming print issue.

In the lab, Yin and his graduate students Yongxing Hu and Le He initially coated the magnetic iron oxide molecules with a thin layer of silica. Then they applied a magnetic field to assemble the particles into chains. Next, they coated the chains with an additional layer of silica to allow for a silica shell to form around and stabilize the chain structure.

According to the researchers, the timing of magnetic field exposure is critically important to the success of the chain formation because it allows for fine-tuning the "interparticle" spacing – the distance between any two particles – within photonic chains. They report that the chaining of the magnetic particles needs to be induced by brief exposure to external fields during the silica coating process so that the particles temporarily stay connected, allowing additional silica deposition to then fix the chains into mechanically robust rods or wires.

They also report in the research paper that the interparticle spacing within the chains in a sample can be fine-tuned by adjusting the timing of the magnetic field exposure; the length of the individual chains, which does not affect the color displayed, can be controlled by changing the duration of the magnetic field exposure.

"The photonic nanorods that we developed disperse randomly in solution in the absence of a magnetic field, but align themselves and show diffraction color instantly when an external field is applied," Yin said. "It is the periodic arrangement of the iron oxide particles that effectively diffracts visible light and displays brilliant colors."

He explained that all the one-dimensional photonic rods within a sample show a single color because the particles arrange themselves with uniform periodicity – that is, the interparticle spacing within all the chains is the same, regardless of the length of the individual chains. Further, the photonic chains remain separated from each other in magnetic fields due to the magnetic repulsive force that acts perpendicular to the direction of the magnetic field.

The researchers note that a simple and convenient way to change the periodicity in the rods is to use iron oxide clusters of different sizes. This, they argue, would make it possible to produce photonic rods with diffraction wavelengths across a wide range of spectrum from near ultraviolet to near infrared.

"One major advantage of the new technology is that it hardly requires any energy to change the orientation of the nanorods and achieve brightness or a color," Yin said. "A current drawback, however, is that the interparticle spacing within the chains gets fixed once the silica coating is applied, allowing for no flexibility and only one color to be displayed."

His lab is working now on achieving bistability for the nanorods. If the lab is successful, the nanorods would be capable of diffracting two colors, one at a time.

"This would allow the same device or pixel to display one color for a while and a different color later," said Yin, a Cottrell Scholar.

A grant to Yin from the National Science Foundation supported the study.

The UCR Office of Technology Commercialization has filed numerous patent applications covering various aspects of Yin's technology, and is currently in negotiations to finalize a commercial license with a California corporation that will develop the technology for market.

The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 20,500 students. The campus will open a medical school in 2012 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion.

A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>