Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanopolymer shows promise for helping reduce cancer side effects

06.04.2011
A Purdue University biochemist has demonstrated a process using nanotechnology to better assess whether cancer drugs hit their targets, which may help reduce drug side effects.

W. Andy Tao, an associate professor of biochemistry analytical chemistry, developed a nanopolymer that can be coated with drugs, enter cells and then removed to determine which proteins in the cells the drug has entered. Since they're water-soluble, Tao believes the nanopolymers also may be a better delivery system for drugs that do not dissolve in water effectively.

"Many cancer drugs are not very specific. They target many different proteins," said Tao, whose findings were published in the early online in the journal Agnewandte Chemie International Edition. "That can have a consequence - what we call side effects."

In addition to the drug, the synthetic nanopolymer is equipped with a chemical group that is reactive to small beads. The beads retrieve the nanopolymer and any attached proteins after the drug has done its work. Tao uses mass spectrometry to determine which proteins are present and have been targeted by the drug.

Knowing which proteins are targeted would allow drug developers to test whether new drugs target only desired proteins or others as well. Eliminating unintended protein targets could reduce the often-serious side effects associated with cancer drugs.

Tao said there currently is no reliable way to test drugs for off-targeting. He said drugs are often designed to inhibit or activate the function of a biomolecule associated with cancer, but those drugs tend to fail in late-stage clinical tests.

Tao also believes his nanopolymers could better deliver drugs to their targets. Since they are nanosized and water soluble, the nanopolymers could gain access to cells more effectively than a standalone drug that is only minimally water-soluble.

Tao demonstrated the nanopolymer's abilities using human cancer cells and the cancer drug methotrexate. The nanopolymers were tracked using a fluorescent dye to show they were entering cells. Then, Tao broke the cells and retrieved the nanopolymers.

Tao has shown the nanopolymer's ability using a metabolic drug, which are small, low-cost drugs but are less target specific and have more side-effects. He now plans to do the same using drugs that are based on synthetic peptides, which are larger and more expensive but more specific and with fewer side effects.

The National Institutes of Health's National Center for Research Resources and a National Science Foundation Career Grant funded the research.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu

Source: Andy Tao, 765-494-9605, taow@purdue.edu

Ag Communications: (765) 494-2722;
Keith Robinson, robins89@purdue.edu
Agriculture News Page

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht First-of-its-kind chemical oscillator offers new level of molecular control
15.12.2017 | University of Texas at Austin

nachricht New technique could make captured carbon more valuable
15.12.2017 | DOE/Idaho National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New technique could make captured carbon more valuable

15.12.2017 | Life Sciences

First-of-its-kind chemical oscillator offers new level of molecular control

15.12.2017 | Life Sciences

A chip for environmental and health monitoring

15.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>