Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoparticles help researchers deliver steroids to retina

13.12.2011
Research at Wayne State University, Mayo Clinic and Johns Hopkins offers potential treatment for macular degeneration and retinitis pigmentosa

Hitching a ride into the retina on nanoparticles called dendrimers offers a new way to treat age-related macular degeneration and retinitis pigmentosa. A collaborative research study among investigators at Wayne State University, the Mayo Clinic and Johns Hopkins Medicine shows that steroids attached to the dendrimers targeted the damage-causing cells associated with neuroinflammation, leaving the rest of the eye unaffected and preserving vision.

The principal authors of the study, Raymond Iezzi, M.D. (Mayo Clinic ophthalmologist) and Rangaramanujam Kannan, Ph.D. (faculty of ophthalmology at The Wilmer Eye Institute of Johns Hopkins) have developed a clinically relevant, targeted, sustained-release drug delivery system using a simple nanodevice construct. The experimental work in rat models was initiated and substantially conducted at Wayne State University, and showed that one intravitreal administration of the nanodevice in microgram quantities could offer neuroprotection at least for a month, and appears in the journal, Biomaterials (33(3), 979-988).

Both dry age-related macular degeneration and retinitis pigmentosa are caused by neuroinflammation, which progressively damages the retina and can lead to blindness. Macular degeneration is the primary cause of vision loss in older Americans, affecting more than 7 million people, according to the National Institutes of Health (NIH). Retinitis pigmentosa encompasses many genetic conditions affecting the retina and impacts 1 in 4,000 Americans, the NIH estimates.

"There is no cure for these diseases, said Iezzi. "An effective treatment could offer hope to hundreds of millions of patients worldwide. We tested the dendrimer delivery system in rats that develop neuroinflammation leading to retinal degeneration. The target was activated microglial cells, the immune cells in charge of cleaning up dead and dying material in the eye. When activated, these cells cause damage via neuroinflammation — a hallmark of each disease."

"Dendrimers are tree-like, non-cytotoxic polymeric drug delivery vehicles (~ 4 nm). Surprisingly, the activated microglia in the degenerating retina appeared to eat the dendrimer selectively and retain them for at least a month. The drug is released from the dendrimer in a sustained fashion inside these cells, offering targeted neuroprotection to the retina," said Kannan.

The treatment reduced neuroinflammation in the rat model and protected vision by preventing injury to photoreceptors in the retina. Although the steroid offers only temporary protection, the treatment as a whole provides sustained relief from neuroinflammation, the study found. The researchers believe that this patent-pending technology with significant translational potential will be advanced further, through this multi-university collaboration among Johns Hopkins, Mayo Clinic and Wayne State. The study was funded by grants from the Ligon Research Center of Vision at Wayne State University, the Ralph C. Wilson Medical Research Foundation, Office of the Vice President for Research at Wayne State University, and Research to Prevent Blindness.

The researchers declare no conflict of interest.

Co-authors include Bharath Raja Guru, Ph.D., Case Western Reserve University; Inna Glybina and Alexander Kennedy, Wayne State University; and Manoj Mishra, Ph.D., The Wilmer Eye Institute of Johns Hopkins.

Wayne State University is one of the nation's pre-eminent public research institutions in an urban setting. Through its multidisciplinary approach to research and education, and its ongoing collaboration with government, industry and other institutions, the university seeks to enhance economic growth and improve the quality of life in the city of Detroit, state of Michigan and throughout the world. For more information about research at Wayne State University, visit http://www.research.wayne.edu.

Julie O'Connor | EurekAlert!
Further information:
http://www.research.wayne.edu

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>