Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoparticles reboot blood flow in brain

24.08.2012
Rice University, Baylor College of Medicine discovery might aid emergency care of traumatic brain-injury victims
A nanoparticle developed at Rice University and tested in collaboration with Baylor College of Medicine (BCM) may bring great benefits to the emergency treatment of brain-injury victims, even those with mild injuries.

Combined polyethylene glycol-hydrophilic carbon clusters (PEG-HCC), already being tested to enhance cancer treatment, are also adept antioxidants. In animal studies, injections of PEG-HCC during initial treatment after an injury helped restore balance to the brain’s vascular system.

The results were reported this month in the American Chemical Society journal ACS Nano.

A PEG-HCC infusion that quickly stabilizes blood flow in the brain would be a significant advance for emergency care workers and battlefield medics, said Rice chemist and co-author James Tour.

“This might be a first line of defense against reactive oxygen species (ROS) that are always overstimulated during a medical trauma, whether that be to an accident victim or an injured soldier,” said Tour, Rice’s T.T. and W.F. Chao Chair in Chemistry as well as a professor of mechanical engineering and materials science and of computer science. “They’re certainly exacerbated when there’s trauma with massive blood loss.”

In a traumatic brain injury, cells release an excessive amount of an ROS known as superoxide (SO) into the blood. Superoxides are toxic free radicals, molecules with one unpaired electron, that the immune system normally uses to kill invading microorganisms. Healthy organisms balance SO with superoxide dismutase (SOD), an enzyme that neutralizes it. But even mild brain trauma can release superoxides at levels that overwhelm the brain’s natural defenses.

“Superoxide is the most deleterious of the reactive oxygen species, as it’s the progenitor of many of the others,” Tour said. “If you don’t deal with SO, it forms peroxynitrite and hydrogen peroxide. SO is the upstream precursor to many of the downstream problems.”

SO affects the autoregulatory mechanism that manages the sensitive circulation system in the brain. Normally, vessels dilate when blood pressure is low and constrict when high to maintain an equilibrium, but a lack of regulation can lead to brain damage beyond what may have been caused by the initial trauma.

“There are many facets of brain injury that ultimately determine how much damage there will be,” said Thomas Kent, the paper’s co-author, a BCM professor of neurology and chief of neurology at the Michael E. DeBakey Veterans Affairs Medical Center in Houston. “One is the initial injury, and that’s pretty much done in minutes. But a number of things that happen later often make things worse, and that’s when we can intervene.”

Kent cited as an example the second burst of free radicals that can occur after post-injury resuscitation. “That’s what we can treat: the further injury that happens because of the necessity of restoring somebody’s blood pressure, which provides oxygen that leads to more damaging free radicals.”

In tests, the researchers found PEG-HCC nanoparticles immediately and completely quenched superoxide activity and allowed the autoregulatory system to quickly regain its balance. Tour said ROS molecules readily combine with PEG-HCCs, generating “an innocuous carbon double bond, so it’s really radical annihilation. There’s no such mechanism in biology.” While an SOD enzyme can alter only one superoxide molecule at a time, a single PEG-HCC about the size of a large protein at 2-3 nanometers wide and 30-40 nanometers long can quench hundreds or thousands. “This is an occasion where a nano-sized package is doing something that no small drug or protein could do, underscoring the efficacy of active nano-based drugs.”

“This is the most remarkably effective thing I’ve ever seen,” Kent said. “Literally within minutes of injecting it, the cerebral blood flow is back to normal, and we can keep it there with just a simple second injection. In the end, we’ve normalized the free radicals while preserving nitric oxide (which is essential to autoregulation). These particles showed the antioxidant mechanism we had previously identified as predictive of effectiveness.”

The first clues to PEG-HCC’s antioxidant powers came during nanoparticle toxicity studies with the MD Anderson Cancer Center. “We noticed they lowered alkaline phosphatase in the liver,” Tour said. “One of our Baylor colleagues saw this and said, ‘Hey, this looks like it’s actually causing the liver cells to live longer than normal.’

“Oxidative destruction of liver cells is normal, so that got us to thinking these might be really good radical scavengers,” Tour said.

Kent said the nanoparticles as tested showed no signs of toxicity, but any remaining concerns should be answered by further tests. The researchers found the half-life of PEG-HCCs in the blood – the amount of time it takes for half the particles to leave the body – to be between two and three hours. Tests with different cell types in vitro showed no toxicity, he said.

The research has implications for stroke victims and organ transplant patients as well, Tour said.

Next, the team hopes to have another lab replicate its positive results. “We’ve repeated it now three times, and we got the same results, so we’re sure this works in our hands,” Kent said.

First authors of the paper are BCM graduate student Brittany Bitner, Rice graduate student Daniela Marcano and former Rice postdoctoral researcher Jacob Berlin, now an assistant professor of molecular medicine at the Beckman Research Institute of the City of Hope, Duarte, Calif. Co-authors are all at BCM: Roderic Fabian, associate professor of neurology; Claudia Robertson, professor of neurosurgery; Leela Cherian, research instructor of neurosurgery; Mary Dickinson, associate professor of molecular physiology; Robia Pautler, associate professor of molecular physiology; and James Culver, a graduate student in molecular physiology.

The research was funded by the Department of Defense’s Mission Connect Mild Traumatic Brain Injury Consortium, the National Science Foundation, the National Institutes of Health and the National Heart, Lung and Blood Institute.

Read the abstract at http://pubs.acs.org/doi/abs/10.1021/nn302615f

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>