Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoparticles engineered at Notre Dame promise to improve blood cancer treatment

18.06.2012
Researchers from the University of Notre Dame have engineered nanoparticles that show great promise for the treatment of multiple myeloma (MM), an incurable cancer of the plasma cells in bone marrow.

One of the difficulties doctors face in treating MM comes from the fact that cancer cells of this type start to develop resistance to the leading chemotherapeutic treatment, doxorubicin, when they adhere to tissue in bone marrow.

"The nanoparticles we have designed accomplish many things at once," says Baºar Bilgiçer, assistant professor of chemical and biomolecular engineering and chemistry and biochemistry, and an investigator in Notre Dame's Advanced Diagnostics and Therapeutics (AD&T) initiative.

"First, they reduce the development of resistance to doxorubicin. Second, they actually get the cancer cells to actively consume the drug-loaded nanoparticles. Third, they reduce the toxic effect the drug has on healthy organs."

A sequence of images showing multiple myeloma cells internalizing the engineered nanoparticles

The nanoparticles are coated with a special peptide that targets a specific receptor on the outside of multiple myeloma cells. These receptors cause the cells to adhere to bone marrow tissue and turn on the drug resistance mechanisms. But through the use of the newly developed peptide, the nanoparticles are able to bind to the receptors instead and prevent the cancer cells from adhering to the bone marrow in the first place.

The particles also carry the chemotherapeutic drug with them. When a particle attaches itself to an MM cell, the cell rapidly takes up the nanoparticle, and only then is the drug released, causing the DNA of cancer cell to break apart and the cell to die.

"Our research on mice shows that the nanoparticle formulation reduces the toxic effect doxorubicin has on other tissues, such as the kidneys and liver," adds Tanyel Kiziltepe, a research assistant professor with the Department of Chemical and Biomolecular Engineering and AD&T.

"We believe further research will show that the heart is less affected as well. This could greatly reduce the harmful side-effects of this chemotherapy."

The group had to tackle three important problems associated with all nanoparticle-based therapies, explains Jonathan Ashley, one of the leading researchers of the project.

"There was some complex bioengineering involved in developing the particles. We were able to precisely control the number of drug and targeting elements on each nanoparticle, achieve homogeneous nanoparticle size distribution and eliminate the batch-to-batch variability in particle production."

Before advancing to human clinical trials, the team plans further research and testing to improve the design of the nanoparticles and to find the optimum amount and combination of chemotherapy drugs for this new treatment.

The research is described in greater detail in a recent edition of Nature's Blood Cancer Journal. It was supported by funding from the Indiana Clinical and Translational Sciences Institute.

Baºar Bilgiçer | EurekAlert!
Further information:
http://www.nd.edu

More articles from Life Sciences:

nachricht 'Lipid asymmetry' plays key role in activating immune cells
20.02.2018 | Biophysical Society

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>