Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoparticles added to platelets double internal injury survival rate

21.08.2012
Results of early lab study hold promise for trauma cases

Nanoparticles tailored to latch onto blood platelets rapidly create healthy clots and nearly double the survival rate in the vital first hour after injury, new research shows.

"We knew an injection of these nanoparticles stopped bleeding faster, but now we know the bleeding is stopped in time to increase survival following trauma," said Erin Lavik, a professor of biomedical engineering at Case Western Reserve University and leader of the effort.

The researchers are developing synthetic platelets that first responders and battlefield medics could carry with them to stabilize car crash or roadside bomb victims. An injection could slow or halt internal bleeding until the victim reaches a hospital and receives blood transfusions and surgery.

Lavik spoke about the latest breakthroughs in her research today at the American Chemical Society's annual meeting in Philadelphia.

Lavik and her colleagues began focusing on synthetic platelets after learning the military has no equivalent of a tourniquet, pressure dressing or other easily transportable technology to stem bleeding from internal injuries.

But as they explored possible applications, they recognized that the approach is widely needed beyond military conflict. Traumatic injury is the leading cause of death for people age 4 to 44, often overwhelming the body's natural blood-clotting process.

The platelet-like nanoparticles are made of biodegradable polymers used in devices already approved by the Food & Drug Administration for use in humans. They're designed to hone in on injuries after injection. Natural platelets, activated by injury, emit chemicals that bind natural platelets and the additional synthetics into a larger clot faster than natural platelets alone.

Tested on a lethal liver injury model in lab rats, the one-hour survival rate of the models injected with the nanoparticles was 80 percent. For control groups treated with saline alone the survival rate fell to 47 percent, while control groups receiving scrambled nanoparticles totaled just 40 percent. Among the three, the models treated with the platelet-like nanoparticles exhibited the least blood loss.

The researchers also found that the hybrid clots were as firm as natural clots. In additional testing, they found no complications following administration of the nanoparticles.

Earlier tests showed these synthetic platelets can cut bleeding time by as much as half and that, a week later, the rats showed no ill effects from the materials

The researchers include graduate students Andrew J. Shoffstall, Lydia M. Everhart and Margaret M. Lashof-Sullivan; research assistants Kristyn T. Atkins and Rebecca E. Groynom; undergraduate student Matt E. Varley; and administrative assistant Blaine Martin-Dow, all of Case Western Reserve. They are teamed with Robert S. Butler, of the Department of Quantitative Health Services at the Cleveland Clinic, and Jeffrey S. Ustin, assistant professor, Case Western Reserve University School of Medicine and member of the Department of General Surgery at the Cleveland Clinic.

They are continuing to test the platelets with other models of injury, working toward the best design and dosage for human use.

Kevin Mayhood | EurekAlert!
Further information:
http://www.case.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>