Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanodomains Made Visible

30.04.2013
In dry conditions, certain areas of the plant cell membrane are subject to significant changes. For the first time, scientists have made these so-called nanodomains visible under the microscope, investigating how they changed.
Plants are generally firmly rooted in the ground so that they cannot just move to a different place when the conditions become too dry or uncomfortable in any other way. Therefore, they must be alert to environmental changes and react appropriately.

When the conditions are favorable, the root absorbs nutrients and life-sustaining water. Above the surface of the ground, the shoot adjusts to the current light conditions, performs photosynthesis and produces components for growth, development and reproduction.

Under stress, the plants switch over from this standard program to survival mode. For this purpose, they need the ability to sense stress factors – such as heat, drought or the presence of pathogens – and to take appropriate action. They are able to do this with the help of sensors, which are each connected to a specific network.

Interconnected platforms in the membranes

"According to current knowledge, the cell membranes contain numerous tiny platforms, where certain signaling proteins interact. To some extent, these platforms possess preset interconnections. Depending on the respective signal, they are then reconfigured," explains Dr. Ines Kreuzer, a plant biologist at the University of Würzburg. Because these membrane platforms are so tiny, they are also known as nanodomains.

Reconfiguration of the nanodomains observed

As reported in the journal PNAS, Kreuzer's study group showed for the first time that the components of the drought stress signaling pathway occupy such nanodomains. In cooperation with Professor Gregory Harms at Wilkes University in Pennsylvania (USA), they were also able to trace the change in the domain composition induced by the hormone abscisic acid (ABA) under the laser microscope.

The ABA hormone is used to communicate changes in the water status between different parts of the plant. In dry conditions, high ABA levels ensure that the plant reduces its loss of water to the minimum.

Several signaling proteins involved

The team of the young Würzburg researcher identified several signaling proteins in the nanodomains as main components of the ABA signaling pathway. Kreuzer: "We are talking about the ion channel SLAH3, which is activated by the protein kinase CPK21. This kinase is controlled by the protein phosphatase ABI1. As soon as the receptor recognizes the presence of the ABA hormone, it deactivates the phosphatase and sends out the kinase to activate the ion channel. The opening of the ion channel converts the 'water shortage' signal into a flow of ions – an electrical response, in other words."

Phosphatase as "doorkeeper"

In this process, the nanodomains are a kind of "meeting place", where the reactants are given the opportunity to meet. In the absence of the drought stress hormone ABA, the phosphatase ensures that the ion channel and the kinase are no longer allowed into the membrane domains – there is no cellular response. "The processing of the hormone signal is obviously regulated on the basis of the fact that certain proteins either have or don't have access to special membrane areas, in which mechanism the phosphatase seems to perform the function of a 'doorkeeper', as Kreuzer summarizes.

The next steps of the research

Further studies are intended to show how the process in the nanodomains impacts on the nucleus. It is conceivable that drought tolerance genes are activated there, ensuring the survival of the plant even when there is a shortage of water.

Ines Kreuzer and her study group conduct research at the Department of Botany I – Molecular Plant Physiology and Biophysics of the University of Würzburg, headed by Professor Rainer Hedrich. Their studies are funded by the German Research Foundation within the Research Training Group 1342 (Molecular and Functional Analysis of Lipid-Based Signal Transduction Systems).

Arabidopsis nanodomain-delimited ABA signaling pathway regulates the anion channel SLAH3. Fatih Demir, Claudia Horntrich, Jörg O. Blachutzik, Sönke Scherzer, Yvonne Reinders, Sylwia Kierszniowska, Waltraud X. Schulze, Gregory S. Harms, Rainer Hedrich, Dietmar Geiger, Ines Kreuzer, PNAS, April 29, 2013, doi 10.1073/pnas.1211667110

Contact persons

Dr. Ines Kreuzer, Department of Botany I – Molecular Plant Physiology and Biophysics, University of Würzburg, T +49 (0) 931 31-86103, ifuchs@botanik.uni-wuerzburg.de

Prof. Dr. Rainer Hedrich, Department of Botany I – Molecular Plant Physiology and Biophysics, University of Würzburg, T +49 (0) 931 31-86100, hedrich@botanik.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>