Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nanocosmos of cells under the magnifying glass


Scientists from the University of Würzburg have managed to take a unique look at the membranes of human cells using a new technique. This technique that they have devised makes individual saccharified proteins and lipids visible at the molecular level.

Picture a satellite orbiting the Earth and capturing numerous individual images of the planet at night in impressive definition, which, when combined to create one single large photograph, deliver an extremely detailed picture of life at night on the surface of the Earth.

Like a satellite that captures highly resolved pictures from the earth: dSTORM microscopy reveals illuminated glycoproteins on cell membranes.

(Picture: Group Jürgen Seibel / Group Markus Sauer)

The dSTORM image shows the glycocalyx of the plasma membrane of cells with the homogeneous distribution of saccharified proteins and lipids.

(Photo: Group Markus Sauer)

Only, in this case, the camera is not orbiting the Earth; it is traveling across human cells. And the light captured does not come from street lights, headlights, and lamps, but from specific structures inside the cell membrane or, more accurately, from glycoproteins and lipids illuminated using a special technique.

The people responsible for these images are Professor Markus Sauer and Professor Jürgen Seibel, a biophysicist and chemist, respectively, from the University of Würzburg. They report on their new findings in the renowned journal “Angewandte Chemie” [Applied Chemistry]; the publishers have even rated their work as a “hot paper”.

Modified sugar molecules and luminescent dyes

“We created sugar-like structures chemically and administered them to the nutrient solution of human cells,” is how Jürgen Seibel explains the procedure the chemists followed. The cells metabolized these molecules and integrated them into their membranes biosynthetically on their surface. The trick: “We modified the sugar molecules slightly so they can be combined with a fluorescent dye,” says Seibel.

The biophysicists’ job was then to illuminate these dyes in a suitable manner so that an image could be generated of the individual molecules on the cell membrane. The technique used was developed by Markus Sauer and his team. Its name: dSTORM – direct Stochastic Optical Reconstruction Microscopy. This is a specific form of high-resolution fluorescence microscopy; it allows images to be captured of cellular structures and molecules at a resolution that is ten times better than ever before. The size of the objects displayed is between 20 and 30 nanometers, i.e. millionths of millimeters.

An Off switch stops the fluorescence

“dSTORM microscopy uses commercial fluorescent dyes which, when exposed to light of a suitable wavelength in the presence of thiols, transition to a reduced and very stable optical ‘off’ state,” says Markus Sauer to explain the principle behind this technique. To put it another way: the dyes stop fluorescing for a few seconds.

It may sound strange at first to deactivate dyes so that a high-resolution image can be generated, but this makes sense when you know the other details: “Once the cell has been exposed, more than 99.9 percent of the dyes are quickly deactivated. But a few continue to shine,” says the biophysicist. The scientists are able to spatially distinguish their signals and thus calculate the exact position of the dye. It is therefore possible to localize individual dye molecules. After that, these molecules, too, lapse into the inactive ‘off’ state.

The scientists repeat this process numerous times and then piece the many “individual images” together to create one overall image. “According to the rule of stochastic randomness, all the dyes are returned to their fluorescent ‘on’ state and localized individually,” says Sauer. A finished image is created once all the molecules have emitted their signals.

Precise statements about location and quantity

The two scientists have counted up to 1600 glycoproteins and glycolipids per square micrometer on the surface of human cells using this method. This means that a single cell carries some five million of these building blocks in total. Humans are made up of around a trillion cells.

The studies conducted at the University of Würzburg are making it possible to localize and quantify the number of sugars on cell surfaces exactly for the very first time. This is of particular interest in the research into infectious diseases and cancer, explains Jürgen Seibel. This is because macromolecules containing carbohydrates, known as glycoproteins and glycolipids, control immune responses, cell growth, and cell death on the cell surface.

Tumors and bacteria, and also viruses, imitate and exploit the natural recognition process and infect human cells. The Würzburg scientists are hoping that their new method will provide deeper insight into such biological happenings. Their work was performed as part of the “3D Super-Resolution” collaborative project, which is funded by the Federal Ministry of Education and Research.

Super-Resolution Imaging of Plasma Membrane Glycans, Sebastian Letschert, Antonia Göhler, Christian Franke, Nadja Bertleff-Zieschang, Elisabeth Memmel, Sören Doose, Jürgen Seibel, Markus Sauer, Angewandte Chemie, published online August 22, 2014, DOI 10.1002/ange.201406045


Prof. Dr. Markus Sauer, T: +49 (0)931 31-88687,

Prof. Dr. Jürgen Seibel, T: +49 (0)931 31-85326,

Weitere Informationen: Homepage of Markus Sauer, Biocenter, University of Würzburg Homepage of Jürgen Seibel, Organic Chemistry, University of Würzburg

Robert Emmerich | Julius-Maximilians-Universität Würzburg

Further reports about: Earth created fluorescence fluorescent glass glycoproteins signals structures technique

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>