Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanobodies from Camels Enable the Study of Organ Growth

10.11.2015

Researchers at the Biozentrum of the University of Basel have developed a new technique using nanobodies. Employing the so-called “Morphotrap”, the distribution of the morphogen Dpp, which plays an important role in wing development, could be selectively manipulated and analyzed for the first time in the fruit fly. In the future, this tool may be applied for many further investigations of organ growth. The results of the study have been published in the current issue of “Nature”.

The two basic processes that control organ development are the regulation of growth and of the spatial pattern. The research group of Prof. Markus Affolter at the Biozentrum, University of Basel, has now developed a method named “Morphotrap” to study wing development in the fruit fly.


Drosophila wing size control depends on the spreading of the Dpp morphogen.

University of Basel, Biozentrum

Their results demonstrate that the signaling molecule Dpp, a so-called morphogen, influences growth in the center of the wing imaginal disc but not in the peripheral regions. It is the first time that an anti-GFP nanobody has been successfully employed in such an investigation. This tool also holds promise for future studies on organ development.

The new method “Morphotrap”: Nanobodies to study growth

Nanobodies are small antibody fragments derived from camels. They enable the research team of Markus Affolter to manipulate molecules in the living organism. The so-called “Morphotrap” method employs anti-GFP nanobodies. Using these Nanobodies, the functions of GFP-tagged proteins in living organisms can be studied faster and more effectively than by conventional methods.

“These anti-GFP nanobodies inhibit the dispersal of the morphogen Dpp at different locations in the wing. Therefore they allow us to identify the influence of Dpp spreading on wing growth,” explains Stefan Harmansa, the first author of the study.

Morphogen Dpp regulates growth in the middle of the imaginal disc

To determine the influence of the morphogen Decapentaplegic (Dpp) in more detail, the Affolter group examined the wing disc of the fruit fly, called the imaginal disc. This is the precursor tissue of the wing of the adult fly and serves as a model for studies on organ development.

“Our findings demonstrate that the morphogen Dpp only affects growth in the center of the imaginal disc. Growth continues in the periphery even when we fully block Dpp dispersal into this regions,” explains Harmansa. “Now, by employing anti GFP nanobodies, we have been able to show to which extent the morphogen Dpp determines the wing size and consequently we could disprove one of the two predominant theories in this field,” says Harmansa.

The fact that anti GFP-nanobodies can successfully be applied for research in complex living organism is a great achievement. Affolter also plans to apply this technique in future research: “In a next step, we will investigate at what time in development Dpp acts to control central growth. The correlation between the spatial and temporal influence of Dpp will provide new insights into organ growth and may uncover possible causes of organ malformation,” says Affolter.

Original source
Stefan Harmansa, Fisun Hamaratoglu, Markus Affolter & Emmanuel Caussinus
Dpp spreading is required for medial but not for lateral wing disc growth
Nature (2015), doi: 10.1038/nature15712

Further information
Prof. Dr. Markus Affolter, University of Basel, Biozentrum, tel. +41 61 267 20 72, email: markus.affolter@unibas.ch
Heike Sacher, University of Basel, Biozentrum, tel. +41 61 267 14 49, email: heike.sacher@unibas.ch

Weitere Informationen:

https://www.unibas.ch/en/News-Events/News/Uni-Research/Tuberculosis-bacteria-out...

Reto Caluori | Universität Basel

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

Liver Cancer: Lipid Synthesis Promotes Tumor Formation

12.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>