Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New “nanobead” approach could revolutionize sensor technology

27.04.2011
Researchers at Oregon State University have found a way to use magnetic “nanobeads” to help detect chemical and biological agents, with possible applications in everything from bioterrorism to medical diagnostics, environmental monitoring or even water and food safety.

When fully developed as a hand-held, portable sensor, like something you might see in a science fiction movie, it will provide a whole diagnostic laboratory on a single chip.

The research could revolutionize the size, speed and accuracy of chemical detection systems around the world.

New findings on this “microfluidic sensor” were recently reported in Sensors and Actuators, a professional journal, and the university is pursuing a patent on related technologies. The collaborative studies were led by Vincent Remcho, an OSU professor of chemistry, and Pallavi Dhagat, an assistant professor in the OSU School of Electrical Engineering and Computer Science.

The key, scientists say, is tapping into the capability of ferromagnetic iron oxide nanoparticles –extraordinarily tiny pieces of rust. The use of such particles in the new system can not only detect chemicals with sensitivity and selectivity, but they can be incorporated into a system of integrated circuits to instantly display the findings.

“The particles we’re using are 1,000 times smaller than those now being used in common diagnostic tests, allowing a device to be portable and used in the field,” said Remcho, who is also associate dean for research and graduate programs in the OSU College of Science.

“Just as important, however, is that these nanoparticles are made of iron,” he said. “Because of that, we can use magnetism and electronics to make them also function as a signaling device, to give us immediate access to the information available.”

According to Dhagat, this should result in a powerful sensing technology that is fast, accurate, inexpensive, mass-producible, and small enough to hold in your hand.

“This could completely change the world of chemical assays,” Dhagat said.

Existing assays are often cumbersome and time consuming, using biochemical probes that require expensive equipment, expert personnel or a complex laboratory to detect or interpret.

In the new approach, tiny nanoparticles could be attached to these biochemical probes, tagging along to see what they find. When a chemical of interest is detected, a “ferromagnetic resonance” is used to relay the information electronically to a tiny computer and the information immediately displayed to the user. No special thin films or complex processing is required, but the detection capability is still extremely sensitive and accurate.

Essentially, the system might be used to detect almost anything of interest in air or water. And the use of what is ordinary, rusty iron should help address issues of safety in the resulting nanotechnology product.

Rapid detection of chemical toxins used in bioterrorism would be possible, including such concerns as anthrax, ricin or smallpox, where immediate, accurate and highly sensitive tests would be needed. Partly for that reason, the work has been supported by a four-year grant from the Army Research Laboratory, in collaboration with the Oregon Nanoscience and Microtechnologies Institute.

However, routine and improved monitoring of commercial water treatment and supplies could be pursued, along with other needs in environmental monitoring, cargo inspections, biomedical applications in research or medical care, pharmaceutical drug testing, or even more common uses in food safety.

Other OSU researchers working on this project include Tim Marr, a graduate student in electrical engineering, and Esha Chatterjee, a graduate chemistry student.

The concept has been proven in the latest study, scientists say, and work is continuing with microfluidics research to make the technology robust and durable for extended use in the field.

About the OSU College of Science: As one of the largest academic units at OSU, the College of Science has 14 departments and programs, 13 pre-professional programs, and provides the basic science courses essential to the education of every OSU student. Its faculty are international leaders in scientific research.

Vincent Remcho | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>