Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New “nanobead” approach could revolutionize sensor technology

27.04.2011
Researchers at Oregon State University have found a way to use magnetic “nanobeads” to help detect chemical and biological agents, with possible applications in everything from bioterrorism to medical diagnostics, environmental monitoring or even water and food safety.

When fully developed as a hand-held, portable sensor, like something you might see in a science fiction movie, it will provide a whole diagnostic laboratory on a single chip.

The research could revolutionize the size, speed and accuracy of chemical detection systems around the world.

New findings on this “microfluidic sensor” were recently reported in Sensors and Actuators, a professional journal, and the university is pursuing a patent on related technologies. The collaborative studies were led by Vincent Remcho, an OSU professor of chemistry, and Pallavi Dhagat, an assistant professor in the OSU School of Electrical Engineering and Computer Science.

The key, scientists say, is tapping into the capability of ferromagnetic iron oxide nanoparticles –extraordinarily tiny pieces of rust. The use of such particles in the new system can not only detect chemicals with sensitivity and selectivity, but they can be incorporated into a system of integrated circuits to instantly display the findings.

“The particles we’re using are 1,000 times smaller than those now being used in common diagnostic tests, allowing a device to be portable and used in the field,” said Remcho, who is also associate dean for research and graduate programs in the OSU College of Science.

“Just as important, however, is that these nanoparticles are made of iron,” he said. “Because of that, we can use magnetism and electronics to make them also function as a signaling device, to give us immediate access to the information available.”

According to Dhagat, this should result in a powerful sensing technology that is fast, accurate, inexpensive, mass-producible, and small enough to hold in your hand.

“This could completely change the world of chemical assays,” Dhagat said.

Existing assays are often cumbersome and time consuming, using biochemical probes that require expensive equipment, expert personnel or a complex laboratory to detect or interpret.

In the new approach, tiny nanoparticles could be attached to these biochemical probes, tagging along to see what they find. When a chemical of interest is detected, a “ferromagnetic resonance” is used to relay the information electronically to a tiny computer and the information immediately displayed to the user. No special thin films or complex processing is required, but the detection capability is still extremely sensitive and accurate.

Essentially, the system might be used to detect almost anything of interest in air or water. And the use of what is ordinary, rusty iron should help address issues of safety in the resulting nanotechnology product.

Rapid detection of chemical toxins used in bioterrorism would be possible, including such concerns as anthrax, ricin or smallpox, where immediate, accurate and highly sensitive tests would be needed. Partly for that reason, the work has been supported by a four-year grant from the Army Research Laboratory, in collaboration with the Oregon Nanoscience and Microtechnologies Institute.

However, routine and improved monitoring of commercial water treatment and supplies could be pursued, along with other needs in environmental monitoring, cargo inspections, biomedical applications in research or medical care, pharmaceutical drug testing, or even more common uses in food safety.

Other OSU researchers working on this project include Tim Marr, a graduate student in electrical engineering, and Esha Chatterjee, a graduate chemistry student.

The concept has been proven in the latest study, scientists say, and work is continuing with microfluidics research to make the technology robust and durable for extended use in the field.

About the OSU College of Science: As one of the largest academic units at OSU, the College of Science has 14 departments and programs, 13 pre-professional programs, and provides the basic science courses essential to the education of every OSU student. Its faculty are international leaders in scientific research.

Vincent Remcho | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>